ПРАВИЛА О РАДУ ПРЕНОСНОГ СИСТЕМА

dецембар, 2017. године

ПРАВИЛА О РАДУ ПРЕНОСНОГ СИСТЕМА
Садржај

Поглавље 1: Опште одредбе

1. Предмет правила о раду преносног система ... 8
2. Преносни систем и област примена правила ... 8
3. Непредвиђене околности .. 8
4. Комисија за праћење примена правила о раду преносног система ... 9

Поглавље 2: Речник

1. Појмови ... 11
2. Скраћенице .. 20

Поглавље 3: Планирање развоја преносног система

1. Увод .. 21
2. Технички услови за сигuran и поузањан рад преносног система ... 21
3. План развоја преносног система .. 23

Поглавље 4: Технички услови за прикључење и за повезивање на преносни систем

1. Увод .. 28
2. Технички услови за прикључење и повезивање свих врста објеката .. 28
3. Технички критеријуми .. 28
4. Шема прикључења и повезивања ... 28
5. Напон ... 29
6. Фреквенција ... 30
7. Уређај за контролу укључења прекидача ... 31
8. Преузимање реактивне снаге из преносне мреже ... 31
9. Квалитет напонског таласа ... 31
10. Струјна несиметрија .. 31
ПОГЛАВЉЕ 5: ПРИСТУП ПРЕНОСНОМ СИСТЕМУ .. 46

5.1. УВОД ... 46
5.2. ПРИСТУП ПРЕКОГРАНИЧНИМ ПРЕНОСНИМ КАПАЦИТЕТИМА 46
5.2.1. Одређивање прекограничног преносног капацитета 46
5.2.2. Реализација додељеног права на прекогранични преносни капацитет 47
5.3. ПРИСТУП ПРЕКО ОБЈЕКАТА .. 47
5.3.1. Увод ... 47
5.3.2. Параметри и начин контроле квалитета електричне енергије. 47
5.3.2.1. Увод ... 47
5.3.2.2. Квалитет напона ... 47
5.3.2.3. Квалитет фреквенције ... 48
5.3.2.4. Квалитет испоруке електричне енергије .. 48
5.3.2.5. Мерење квалитета испоручене електричне енергије 48
5.3.3. Утврђивање чињеница о поремећеном приступу 48

4.2.7.2. Виши хармоници .. 31
4.2.7.3. Фликери ... 32
4.2.8. Учешће у Плановима одбране преносног система 32
4.2.9. Комуникација и размена података у реалном времену 32
4.2.10. Центар управљања корисника преносног система 33
4.2.11. Защита ... 34
4.2.11.1. Увод .. 34
4.2.11.2. Избор врста заштића за мрежу 110 kV .. 34
4.2.11.3. Избор врста заштића за мрежу 220 kV и 400 kV 37
4.2.11.4. Подешења заштића ... 37
4.2.11.5. Зоне деловања заштића ... 37
4.2.11.6. Времена искључења кварова ... 38
4.2.11.7. Аутоматско поновно укључење .. 38

4.3. ДОДАТНИ ТЕХНИЧКИ УСЛОВИ ЗА ГЕНЕРАТОРСКЕ ЈЕДИНИЦЕ 39
4.3.1. Увод ... 39
4.3.2. Веза са преносном мрежом ... 39
4.3.3. Синхронизација на преносну мрежу ... 39
4.3.4. Размена података у реалном времену ... 39
4.3.5. Предаја активне снаге у преносну мрежу .. 40
4.3.6. Регулација фреквенције и снаге размене ... 41
4.3.6.1. Примарна регулација .. 41
4.3.6.2. Секундарна регулација ... 42
4.3.6.3. Терцијарна регулација ... 42
4.3.7. Регулација напона ... 42
4.3.8. Искључење генераторске јединице са преносне мреже 43
4.3.8.1. Искључење генератора збog одступања фреквенције 43
4.3.8.2. Искључење генератора као последица одступања напона 43
4.3.9. Понашање генераторске јединице у случају поремећаја 44
4.3.9.1. Стабилност угла ротора при појави кратких спојева у преносној мрежи...... 44
4.3.9.2. Стабилност угла ротора услед малих поремећаја 44
4.3.9.3. Испад генератора на сопствену потрошњу .. 44
4.3.9.4. Способност безнапонског покретања генератора 44
4.3.9.5. Способност острвског рада генератора ... 45
4.3.10. Стабилност ... 45

ПРЕНОСНОМ СИСТЕМУ
ПОГЛАВЉЕ 6: РАД ПРЕНОСНОГ СИСТЕМА

6.1. УВОД

6.2. ВРСТЕ И ОБИМ ПОМОЋНИХ И СИСТЕМСКИХ УСЛУГА

6.2.1. Увод

6.2.2. Примарна резерва

6.2.3. Секундарна резерва

6.2.4. Терцијарна резерва

6.2.5. Регулација напона

6.2.6. Компензација нежељених одступања

6.2.7. Учешће у успостављању преносног система

6.3. ПЛАНОВИ ОДБРАНЕ ПРЕНОСНОГ СИСТЕМА

6.3.1. Увод

6.3.2. План подфrequентне заштите

6.3.3. Планови ограничења испоруке електричне енергије

6.3.4. План успостављања преносног система

6.4. ПЛНИРАЊЕ РАДА ПРЕНОСНОГ СИСТЕМА

6.4.1. Увод

6.4.2. Годишњи план рада преносног система

6.4.3. Дневни планови рада

6.4.4. Планови искључења у мрежи 400 kV, 220 kV, 110 kV

6.4.5. Додатни подаци за планирање рада у интерконекцији

6.5. УПРАВЉАЊЕ ПРЕНОСНИМ СИСТЕМОМ

6.5.1. Увод

6.5.2. Управљање у нормалном раду

6.5.2.1. Издавање налога

6.5.2.2. Регулација фреквенције и снаге размене

6.5.2.3. Регулација напона

6.5.2.4. Надгледање рада преносног система

6.5.2.5. Извођење радова у мрежи 400 kV, 220 kV, 110 kV

6.5.2.6. Прикупљање података

6.5.3. Управљање у условима поремећаја

6.5.3.1. Увод

6.5.3.2. Санирање поремећаја

6.5.3.3. Ограничење испоруке електричне енергије

6.5.3.4. Успостављање преносног система

6.6. РАД СИСТЕМА ЗАШТИТЕ

6.6.1. Документација и техничка упутства

6.6.2. Преподешења, замена и одржавање

6.6.3. Функционисање у реалном времену

6.6.4. План подешења заштита од преоптерећења

6.7. РАД КОМУНИКАЦИОНОГ И ТЕХНИЧКОГ СИСТЕМА УПРАВЉАЊА

6.7.1. Комуникациони систем

6.7.2. Технички систем управљања

6.7.3. Привремена нерасположивост центара управљања ЕМС АД

6.7.4. Одржавање комуникационе и опреме за управљање

6.7.5. Захтеви према корисницима преносног система

6.8. РАД УРЕЂАЈА ЗА СТАБИЛНОСТ

6.9. ИЗВЕШТАВАЊЕ О РАДУ ПРЕНОСНОГ СИСТЕМА
ПОГЛАВЉЕ 1: ОПШТЕ ОДРЕДБЕ

1.1. ПРЕДМЕТ ПРАВИЛА О РАДУ ПРЕНОСНОГ СИСТЕМА

1.1.1. Правилима о раду преносног система (у даљем тексту: Правила) уређују се:

1) планирање развоја преносног система (садржај плана развоја, начин планирања) и садржај плана инвестиција;
2) услови за сигуран и поуздан рад преносног система;
3) технички услови за прикључење и за повезивање на преносни систем;
4) обавезе корисника преносног система неопходне за сигуран и поуздан рад система;
5) обавезе корисника система и оператора преносног система у функционалном испитивању;
6) садржина уговора о експлоатацији објекта;
7) коришћење и одржавање објекта;
8) параметри и начин контроле квалитета електричне енергије;
9) планирање рада преносног система;
10) процедура за пријаву и потврду програма (планова) рада балансно одговорних страна;
11) врсте и обим помоћних и системских услуга;
12) оперативни поступци и управљање преносним системом у нормалним условима и у случају поремећаја;
13) приступ преносном систему, инструмент обезбеђења плаћања приступа систему и критеријуми за утврђивање износа и период за који се тражи;
14) процедура за мерење и дефинисање мерне опреме;
15) обука особља оператора и корисника преносног система на пољу оперативних поступака, у циљу сигурног и поузданог рада преносног система;
16) друга питања неопходна за рад преносног система.

1.2. ПРЕНОСНИ СИСТЕМ И ОБЛАСТ ПРИМЕНЕ ПРАВИЛА

1.2.1. Оператор преносног система, поред преносног система, управља и делом дистрибутивног система, што по правилу обухвата: спојна поља 110 kV, далеководна пола 110 kV и сабирнице 110 kV, а у складу са категоризацијом елемената ЕЕС из тачака 1.2.2.-1.2.4.

1.2.2. Елементи ЕЕС 400 kV, 220 kV и 110 kV се по правилу разврставају у зависности од напонског нивоа објекта и утицаја елемената на поузданост рада преносног система и интерконекције, а према следећим општим критеријумима категоризације:
- у прву групу: елементи ЕЕС напонског нивоа 400 kV и 220 kV и интерконективни далеководи 110 kV са припадајућим пољем;
- у другу групу: елементи ЕЕС 110 kV који су важни за поуздан рад енергетских објеката за производњу електричне енергије и интерконективних далековода 110 kV;
- у трећу групу: елементи ЕЕС 110 kV који не потпадају под критеријуме за прву и другу групу, а којима управља ЕМС АД;
- у четврту групу: елементи ЕЕС којима ЕМС АД не управља.
Ближе критеријуме категоризације утврђује ЕМС АД.

1.2.3. ЕМС АД израђује документ Категоризација елемената ЕЕС 400 кВ, 220 кВ и 110 кВ (у даљем тексту: Категоризација) који обухвата списак свих далековода, трансформаторских станица и разводних постројења, са пуним називом, нумерацијом и категоризацијом елемената преносних и објеката корисника преносног система 400 кВ, 220 кВ и 110 кВ.

1.2.4. Област примене ових Правила, поред самог преносног система, јесу и елементи ЕЕС 400 кВ, 220 кВ и 110 кВ који су Категоризацијом сврстани у прву, другу или трећу групу елемената ЕЕС, а нису део преносног система.

1.3. НЕПРЕДВИЂЕНЕ ОКОЛНОСТИ

1.3.1. Ако у току примене Правила, независно од воље ЕМС АД, наступе околности које се нису могле предвидети, односно чије се наступање није могло спречити, а деловање тих околности може проузроковати измене техничке услове коришћења преносног система и изазвати последице по кориснике преносног система, ЕМС АД је овлашћен да предузме мере за случај непредвиђених околности.

1.3.2. Мере из тачке 1.3.1. ЕМС АД предузима у споразуму са корисницима преносног система код којих се јављају измене технички услови коришћења система. ЕМС АД је дужан да, одмах пошто утврди могуће начине отклањања последица деловања непредвиђених околности, о томе обавести погођене кориснике преносног система и предложи мере које је могуће предузети, са роком у којем је те мере потребни предузети.

1.3.3. Ако се између ЕМС АД и корисника не може постићи споразум о предузимању мера у располаживом временском року, ЕМС АД одлучује о примени мера за спречавање, односно отклањање последица деловања непредвиђених околности, о томе обавести погођене кориснике преносног система и предложи мере које је могуће предузети, са роком у којем је те мере потребни предузети.

1.3.4. Корисник преносног система је дужан да се придржава свих упутстава добијених од стране ЕМС АД у циљу спровођења одговарајућих мера у току трајања непредвиђених околности.

1.3.5. ЕМС АД је дужан да сачини извештај о примене мера за случај непредвиђених околности, на начин и по поступку за израду ванредних извештаја о раду преносног система, у којем се, поред осталог, наводе узроки наступања непредвиђених околности, меро које су предузете и последица деловања непредвиђених околности. Извештај се, поред осталих надлежних органа, у складу са Правилима, доставља и Комисији за праћење примене Правила о раду преносног система.

1.3.6. ЕМС АД је дужан да најкасније у року од 45 дана, од дана настанка непредвиђених околности, сачини и поднесе на разматрање усаглашавање иницијативу за измену, односно допуну Правила, у циљу уређивања тог питања.

1.4. КОМИСИЈА ЗА ПРАЋЕЊЕ ПРИМЕНЕ ПРАВИЛА О РАДУ ПРЕНОСНОГ СИСТЕМА

1.4.1. Комисија за праћење примене Правила о раду преносног система (у даљем тексту Комисија) је саветодавно тело које:
- донosi пословник о раду Комисије;
- прати примену Правила;
разматра иницијативе за измену, односно допуну Правила.

1.4.2. EMC АД обезбеђује услове за рад Комисије.

1.4.3. Чланови комисије су:
- 6 представника EMC АД од којих један врши функцију председника Комисије;
- 2 представника произвођача електричне енергије;
- 1 представник повлашћених произвођача електричне енергије;
- 2 представника оператора дистрибутивних система;
- 1 представник гарантованог снабдевача;
- 2 представника снабдевача;
- 2 представника купаца чији су објекти прикључени на преносни систем.

1.4.4. У раду Комисије учествује и представник Агенције за енергетику Републике Србије (у даљем тексту: Агенција) без права гласа и одлучивања.

1.4.5. Члан Комисије који представља групу корисника преносног система се одређује на период од две године.

1.4.6. У оквиру групе, право корисника преносног система да одреди члана Комисије се утврђује према листи редоследа која се сачињава на основу:
- броја лиценце из Регистра издатих лиценци Агенције, за произвођаче електричне енергије, операторе дистрибутивног система и снабдеваче;
- редног броја у Регистру повлашћених произвођача електричне енергије министарства Владе Републике Србије надлежног за послове енергетике;
- азбучног реда објеката купаца који су прикључени на преносни систем.

1.4.7. Комисија доноси пословник о раду, којим се уређује начин рада Комисије, а нарочито:
- начин сазивања редовних и ванредних седница;
- начин вођења и објављивања листе корисника преносног система за сваку групу и начин објављивања листе чланова Комисије;
- начин достављања материјала за седнице Комисије;
- начин објављивања записника са седница Комисије;
- тумачење пословника.
ПОГЛАВЉЕ 2: РЕЧНИК

2.1. ПОЈМОВИ

2.1.1. Појмови употребљени у Правилима имају значења дефинисана прописима из области енергетике, изузев:

АГРЕГАТ – Функционална целина коју сачињавају турбина, генератор и неопходни пратећи уређаји.

АКТИВНА СНАГА – Реални део произвођа комплексног напона и конјуговано-комплексне струје. Ово је компонента снаге која врши жељени рад на страни потрошње.

АУТОМАТСКА РЕГУЛАЦИЈА ПРОИЗВОЂЕЊЕ – Процес аутоматског управљања производњом (активном снагом) регулационих електрана, тако да се фреквенција и сума снаге размене електричне енергије са суседним преносним системима одрже што је могуће ближе планираним вредностима.

БАЛАНСИРАЊЕ (ПРЕНОСНОГ СИСТЕМА) – Процес ангажовања секундарне и терцијарне резерве у циљу одржавања суме снаге размене са суседним преносним системима и фреквенције на планираној вредности. При томе се не може одступити од декларисаног редоследа ангажовања резерве из балансног механизма.

БАЛАНСНА ГРУПА – Виртуелна област која може примити, односно из које се може предати електрична енергија, а која служи за потребе обрачунавања и финансијског поравнавања с аспекта балансне одговорности. Она обухвата скуп места примопредаја електричне енергије у преносном, односно дистрибутивном систему, као и пријем и предају енергије по основу блокова прекограничне и интерне размене електричне енергије појединих учесника на тржишту.

БАЛАНСНИ ЕНТИТИТЕ је:

а) група производних јединица – унутар једног или више производних објеката;

б) производна јединица – која представља појединчан генератор унутар производног објекта;

в) управљива потрошња – која представља реверзibilну хидроелектрану или пумпно-акумулационо постојање када раде у пумпном режиму или објекат купца који може да регулише потрошњу на захтев оператора преносног система.

БАЛАНСНО ОДГОВОРНА СТРАНА – Учесник на тржишту електричне енергије који је балансно одговоран за одступања једне балансне групе у тржишној области Србије и који је закључио уговор о балансној одговорности са оператором преносног система.

БЕЗНАПОНСКА ПАУЗА – Време од деловања заштите и давања импулса за искључење прекидача до давања импулса за укључење прекидача од стране уређаја (функције) за аутоматско поновно укључење (АПУ). Безнапонска пауза не обухвата времену искључења, односно време укључења прекидача.

БЕЗНАПОНСКО ПОКРЕТАЊЕ ГЕНЕРАТОРА – Способност производне јединице да се из стања када је искључена с мреже врати у оперативно стање и поче да предаје снагу, у ситуацији када је део преносног система на који је прикључена у безнапонском стању.

БЛОК РАЗМЕНЕ ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ – Пријављена размена електричне енергије између две балансне групе (блок интерне размене), односно једне балансне групе и
прекограничног партнера (блок прекограничне размене), у одређеном временском интервалу, са дефинисаном вредности блока и смером размене.

Бројило – Уређај за мерење и регистровање електричне енергије и снаге. Бројило обавља више функција: мери активну и реактивну електричну енергију по тарифним ставовима, региструје дијаграме оптерећења активне и реактивне снаге и командује пребацивањем између тарифних регистара.

Бруто потрошња – Збир укупне потрошње са свих места примопредаје изузев на интерконектираним далеководима и техничких губитака у преносном систему.

Валидација – Провера ваљаности мерних података добијених на тржишту електричне енергије и анализом дневника догађаја који се региструју у бројилима.

Виш хармоник – Синусоидална компонента напонског, односно струјног таласа чија је фреквенција једнака производу пх50 Hz, где је п природан број већи од 1.

Време искулечења кварова – Време које обухвата подешено време деловања главних (основних) защита и време искулечења прекидача.

Грешка регулационе области – Тренутна разлика између стварне и планиране вредности снаге размене регулационе области, коригована за вредност фреквентног члана за ту регулациону област (произвођ регулационе константе дате регулационе области и одступања фреквенције).

Даљинска аквизиција – Даљинско прикупљање података са бројила и регистратора података из надлежног центра.

Дневни план рада организованог тржишта електричне енергије – Електронски документ који садржи резултате трговања на организованом дан унапред или унутардневном тржишту електричне енергије у виду блокова интерне размене електричне енергије. Овај документ доставља ЕМС АД оператор тржишта електричне енергије или право лице које је овај оператор овласти за достављање дневног плана рада у име своје балансне групе.

Додели априорни капацитет – Укупан преносни капацитет који је на одговарајући начин додељен на коришћење учесницима на тржишту електричне енергије од стране оператора преносног система.

Дозвола за рад – Врста документа за рад чије издавање претходи отпочињању радова на електротехничким објектима ЕЕС, или у близини електротехничког објекта.

Електроенергетски објекат – Грађевинско-електромонтажна целина која служи за производњу, односно пренос, односно дистрибуцију, односно потрошњу електричне енергије.

Електроенергетски систем – Скуп свих међусобно повезаних електроенергетских објеката који сачињавају јединствену техничко-технолошку целину.

Елемент ЕЕС – Далековод, далеководно поље, трансформатор, трансформаторско поље, систем сабирница, спојно поље, мерно поље, растављач... Оvakav елемент је категорисан у одређену групу Категоризације елемената 400 kV, 220 kV и 110 kV.
ЕНЕРГЕТСКИ СУБЈЕКТ – Правно лице, односно предузетник, које је уписано у регистар за обављање једне или више енергетских делатности које се односе на електричну енергију. EIC Z Код – Јединствени идентификатор код сваког мерног места. Овај код се састоји од 16 алфабетских и цифара који описује мерно место и напон мерења. Ове кодове за мерна места прикључења и повезивања генерише ЕМС АД.
ЗАШТИТНИ УРЕЂАЈ (ЗАШТИТА) – Уређај који штити елемент электроенергетског система од погонских услова изван граница нормалног функционисања. Заштита се спроводи аларирањем и исхлопивањем штићеног елемента.
ИНТЕРВЕНТНИ РАДОВИ – Радови на елеменатима ЕЕС, или у близини елемената ЕЕС чије извођење није предвиђено одговарајућим плановима искључења (ови радови се по правилу спроводе због насталог или потенцијалног квара на елементу ЕЕС).
ИНТЕРКОНЕКЦИЈА (ПОВЕЗАНИ СИСТЕМ) – Систем који се састоји од два или више појединачних преносних система који се у синхроном раду и повезани интерконективним далеководима.
ИНТЕРКОНЕКТИВНИ (ПОВЕЗАН) ДАЛЕКОВОД – Далековод који повезује две регулационе области, односно два електромобилског система.
ИНТЕРАНА РАЗМЕНА ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ – Размена електричне енергије између учесника на тражишту електричне енергије унутар регулационе области оператора преносног система.
ИСПАД – Неочекивано искључење једног или више елемената электроенергетског система услед квара или других узрока.
ЈЕДНОФАЗОАН АПУ – Циклус рада заштитне и уређаја (функције) за аутоматски поновно укључење (АПУ) који једнофазне земљоспојеве исхлопује једнофазно (само фаза која је погођена земљоспојем) и после безнапонске паузе укључује ту исту фазу.
КАПАЦИТЕТ – Називно континуално оптерећење производне јединице, преносног елемената или друге електричне опреме.
КАРАКТЕРИСТИЧАН ДАН – Календарски дан који ЕМС АД одређује у сагласности са правилима о раду интерконекције.
КАТЕГОРИЗАЦИЈА ЕЛЕМЕНАТА ЕЕС – Поступак којим ЕМС АД сваки 400 kV, 220 kV и 110 kV елемент ЕЕС сврстава у једну од 4 групе (категорије), сагласно критеријумима за категоризацију које доноси ЕМС АД и објављује у документу Категоризација елемената 400 kV, 220 kV и 110 kV ЕЕС Републике Србије. Сврха категоризације елемената ЕЕС је да се одреде области управљања центара управљања ЕМС АД и корисника преносног система и уреде обавезе ЕМС АД и корисника преносног система у експлоатацији преносних и објеката корисника преносног система.
КВАР – Догађај који настаје на опреми и доводи до престанка нормалног извршавања функције опреме и испада те опреме из погона.
КОМПЕНЗАЦИЈА ПРОГРЕМА (ПРОГРЕМ КОМПЕНЗАЦИЈЕ НЕЖЕЉЕНИХ ОДСТУПАЊА) – Програм размене електричне енергије између регулационих области, односно регулационих блокова у циљу компензације нежељених одступања, која се врши испоруком или пријемом електричне енергије из интерконекције током компензационог периода путем програма коначне снаге у оквиру истих тарифних периода у којима су се одступања догодили у референтном временском нивоу.
КОНФИГУРАЦИЈА БРОЈИЛА – Поступак задавања утврђених, односно договорених мерних и тарифних кодова на електромобилу. Конфигурација бројила може бити примарна
конфигурација, када се као један од параметара уноси обрачунска константа мерног места или секундарна, када се не уноси обрачунска константа.

КОРИСНИК ПРЕНОСНОГ СИСТЕМА – Енергетски субјекат или купца, који је власник или носилац права коришћења објекта који је прикључен на преносни систем или повезан са преносним системом, односно снабдевац или гарантовани снабдевац који има право приступа преносном систему.

КРИТЕРИЈУМ СИГУРНОСТИ „N–1” – Критеријум сигурности под којим се подразумева да једнорушни испад било коег елемента преносног система (обавезно генератора, далековода, трансформатора, а опционо у складу са проценом ризика и осталих елемента у мрежи) не доводи до преоптерећења осталих елемената нити нарушења напонских ограничења у чвориштима преносног система.

ЛОКАЛНА АКВИЗИЦИЈА – Прикупљање мерних података са бројила и регистратора података на самом мерном месту. Локално прикупљање података може бити визуелно (очитавањем стања регистара бројила и регистратора) или путем локалне комуникације преко оптичког или серијског порта бројила и регистратора.

ЛОКАЛНА ОПРЕМА ЗА СЕКУНДАРНУ РЕГУЛАЦИЈУ – Опрема смештена у електрани која проследује регулиони импулс или поставну вредност активне снаге (сетпоинт) до турбинског регулатора агрегата.

МАРГИНА ПОУЗДАНОСТИ ПРЕНОСА – Део прекограничног преносног капацитета који је неопходан како би се обезбедио поуздан рад преносног система због неизвесности по питању услова планираног рада преносног система. Ове неизвесности првенствено произилазе из рада секундарне регулативне, потребе за хаваријским разменама електричне енергије и одступања погоне у реалном времену од планова рада. Суседни оператори преносног система се договарају о вредности ове маргине.

МЕСТО ПОБЕЗИВАЊА – Граница имовине између преносне мреже и дистрибутивног објеката.

МЕСТО ПРИКЉУЧЕЊА – Граница имовине између преносне мреже и објекта произвођача или купца.

МЕСТО ПРИМОПРЕДАЈЕ – Место на коме се врши испорука електричне енергије из преносног система, односно у преносни систем.

МЕРНИ ПОДАЦИ – Измерене вредности мерних величина сачуване у меморијским регистрима бројила. То су подаци о регистрованој активној и реактивној енергији, дијаграм активне и реактивне снаге, као и датум и време максималног оптерећења. Сваком мерном податку се придружује временска значака која временски одређује идентитет мерног податка.

МЕРНО МЕСТО – Место (у електричном смислу) на коме су прикључени напонски и струјни мерни трансформатори који напајају припадајућа бројила за мерење размењене електричне енергије између објекта корисника преносног система и преносне мреже.

МРЕЖА 400 kV, 220 kV, 110 kV – Елементи ЕЕС који су сврстани у прву, другу и трећу групу Категоризације. Обухвата преносну мрежу и делове објеката корисника преносног система преко којих се физички преноси електрична енергија.

НАПОНСКИ СЛОМ – Појава брзог снижавања напона у преносном систему услед недостатка активне енергије.

НАПОНСКЕ РЕДУКЦИЈЕ – Снижавање радног напона у дистрибутивним мрежама којима се енергија испоручује из преносне мреже, на износ од 95% називног напона дистрибутивне мреже.
НЕЖЕЉЕНО ОДСТУПАЊЕ – Одступање реализације сума прекограничних размена електричне енергије које улазе у програм размене регулационе области од планиране сума ових размена.

НЕСИМЕТРИЈА НАПОНА (СТРУЈА) – Стање у фишефазном систему у ком ефективне вредности међуфазних напона, односно струја (основна компоненета) или фазни углови између суседних међуфазних напона, односно струја, нису сви једнаки. Степен неједнакости се обично изражава односом инверзних и нултих компонената према директној компоненти напона, односно струја..

НЕТО ПРЕНОСНИ КАПАЦИТЕТ – Максимални укупни програм размене између две суседне регулационе области усклађен са сигурносним стандардима који се примењују у свим регулационим областима синхроне области, узимајући у обзир техничке неизвесности будућих услова у мрежи. Израчунава се према правилима о раду интерконекције.

НОРМАЛАН РАД ПРЕНОСНОГ СИСТЕМА – Рад преносног система при коме су задовољени сви услови сигурног рада овог система, услови стабилности и при коме не постоји прекид испоруке електричне енергије из преносног система због узрока унутар преносног система.

ОБАВЕШТЕЊЕ О ЗАВРШЕТКУ РАДОВА – Врста документа за рад чије издавање следи након завршетка радова на елементима ЕЕС, или у близини елемената ЕЕС.

ОБРАЧУНСКА КОНСТАНТА – Неименовани број који се добија множењем преносних односа напонских и струјних мерних трансформатора на мерном месту, а који се користи да би се и секундарне вредности енергије и снаге измерених на бројилу превеле у стварне примарне вредности енергије и снаге.

ОДРЖАВАЊЕ ОБЈЕКАТА – Активности којима се обезбеђује технички исправно стање објеката (преглед, ревизија, ремонт и погонска испитивања). Објекти се одржавају према одговарајућим стандардима и прописима о техничким нормативима, према упутствима производача и према интерним техничким актима и годишњим плановима корисника, заснованим на погонском искуству и праћењу развоја технологије одржавања.

ОПСЕГ ПРИМАРНЕ РЕГУЛАЦИЈЕ – Опсег подешења снаге примарне регулације у оквиру којег примарни регулатори могу да обезбеде аутоматску регулацију у оба смера, као одговор на одступање фреквенције.

ОПСЕГ СЕКУНДАРНЕ РЕГУЛАЦИЈЕ – Опсег подешења снаге на секундарном регулатору у оквиру којег секундарна регулација може радити аутоматски у одређеном времену, у оба смера од радне тачке снаге секундарне регулације фреквенције и снаге размене.

ОСТРОВО – Део преносног система који је одвојен од остатка интерконекције. Рад објекта у острву назива се островски рад.

ПЛАН И ПРОГРАМ ПРИМЕНЕ ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ – План размене електричне енергије дефинише договорену трансакцију у погледу снаге (MW), времена почетка и краја, односно врсте трансакције (нпр. гарантованост). Програм размене електричне енергије представља укупну планирану размену електричне енергије између две регулационе области, или између регулационих блокова.

ПОРЕМЕЂАЈ – Стање у преносном систему које не задовољава било који од услова дефинисаних за нормалан рад система.

ПОРЕМЕЂЕН ПРИСТУП – Погонско стање у месту прикључења, односно повезивања при коме је ефективна вредност бар једног фазног напона виша или нижа од прописаног
опсега за нормалне радне напоне, односно када се вредност фреквенције налази ван опсега 49,5 – 50,5 Hz (транзијентне појаве у преносном систему се не узимају у обзир). Уколико корисник преносног система има више места прикључења, односно повезивања у једном објекту, не сматра се да постоји поремећени приступ ако укупан преносни капацитет таچака прикључења, у којима су нормални погонски услови, превазилази одобрену снагу овог корисника.

ПОСТРОЈЕЊЕ – Део електроенергетског објекта истог напонског нивоа.

ПОТЕНЦИЈАЛНИ КВАД – Случајни догађај унутрашњег или спољњег порекла који настaje на опреми и узрокује смањену поузданост рада опреме (постоји значајна вероватноћа испада опреме из погона, као и придружене опреме).

ПОТОРШЊА (НЕТО ПОТОРШЊА) – Електрична енергија, односно снага, која се преузима из преносне мреже или њеног дела.

ПОУЗДАНОСТ – Способност елемената преносног система да током одређеног временског периода испоручују електричну енергију одговарајућим корисницима преносног система у оквиру прихваћених стандарда и у жељеном износу. Поузданост на преносном нивоу може бити мерена фреквенцијом, трајањем и величином (или вероватноћом) негативних ефеката на потрошњу, пренос, или производњу електричне енергије.

ПРАВИЛА О РАДУ ИНТЕРКОНКЕЦИЈЕ – Правила уређена документима ENTSO-E које су оператори преносних система као чланови ове организације дужни да спроводе на основу европске регулативне и интерних аката организације.

ПРЕНОСНА МРЕЖА – Мрежа која обухвата све електроенергетске објекте који су имовина оператора преносног система (далеководи, трансформаторске станице и разводна постројења).

ПРЕНОСНИ ОБЈЕКАТ – Електроенергетски објекат чији је носилац права коришћења ЕМС АД.

ПРИМЕРНА РЕГУЛАЦИЈА – Примарна регулација је аутоматска децентрализована функција регулатора турбине којом се подешава излазна снага генераторске јединице као последица одступања фреквенције у синхроној области. Примарна регулација требало би да се, што је могуће равномерније, распореди на јединице које су у погону у синхроној области.

ПРИМЕРНИ РЕГУЛATOR – Подсистем турбинског регулатора за корекцију задате снаге генератора на основу брзине обртања генератора.

РАСПОЛОЖИВИ ПРЕНОСНИ КАПАЦИТЕТ – Разлика нето преносног капацитета и додељеног преносног капацитета учесницима на тржишту електричне енергије.

РАСПОЛОЖИВОСТ – Стање у коме је производна јединица, преносни елемент или неки други елемент електроенергетског система, способан да изврши предвиђену функцију, без обзира да ли стварно јесте или није у употреби.

РЕАКТИВНА СНАГА – Имагинарни део производа комплексног напона и конјуговано-комплексне струје. Реактивна снага ствара и одржава електромагнетно поље које се подешава, а не преузима енергију. Реактивну енергију производе генераторе, синхронци компензатори или електростатичка опрема као што су кондензатори, и она директно утиче на напон у електроенергетском систему. Реактивну снагу производе и далеководи када се оптерећени испод природне снаге.

РЕГУЛАЦИЈА НАПОНА – На нивоу преносног система: координисана управљачка акција која обухвата управљање производњом реактивне енергије у генераторама, синхроним
компензаторима, статичким уређајима за компензацију, те управљање токовима реактивне снаге у мрежи 400 кВ, 220 кВ, 110 кВ променом односна трансформације и укључењем, односно искључењем елемената мреже 400 кВ, 220 кВ, 110 кВ. На нивоу генератора: аутоматско или ручно подешавање побудне струје у циљу постигања одговарајућег напона на генератору или на високонапонској страни блоктрансформатора.

РЕГУЛАЦИОНА ОБЛАСТ – Саставни део интерконекције којом управља један оператор преносног система.

РЕГУЛАЦИОНИ ПРОГРАМ – Збир свих планова размене регулационе области, односно свих програма размене регулационе области и компензационог програма. Користи се као улазна величина за секундарну регулацију.

РЕГУЛATOR ПОБУДЕ – Децентрализовани, локално инсталисани регулациони уређај на генератору за регулисана струје побудне.

РЕГУЛАЦИОНА област (РЕГУЛАЦИЈА) – Саставни део интерконекције у коме управља један оператор преносног система.

РЕЗЕРВА ПРИМАРНЕ РЕГУЛАЦИЈЕ (ПРИМАРНА РЕЗЕРВА) – Део опсега примарне регулације мерен од радне тачке пре поремећаја до максималног износа снаге примарне регулације. Можети бити позитивна и негативна.

РЕЗЕРВА СЕКУНДАРНЕ РЕГУЛАЦИЈЕ (СЕКУНДАРНА РЕЗЕРВА) – Део опсега секундарне регулације између радне тачке и максималне вредности (позитивна, односно негативна резерва).

РЕЗЕРВА ТЕРЦИЈАРНЕ РЕГУЛАЦИЈЕ (ТЕРЦИЈАРНА РЕЗЕРВА) – Према начину активирања дели се на директну и планску терцијарну резерву. Директна терцијарна резерва је она која се активира у било које време налогом диспечера за мање од 15 минута. Планска терцијарна резерва је она резерва која се активира за време дуже од 15 минута (по правилу кроз Дневни план рада преносног система). Према смеру терцијарна резерва се делит на позитивну и негативну резерву. Под негативном резервом сматра се: повећање производње, прекогранични пријем електричне енергије и смањење потребе. Под позитивном резервом сматра се: смањење производње, прекогранична предаја електричне енергије и повећање потребе.

РУКОВАЛАЦ – Лице у електроенергетском објекту задужено за надзирање рада објекта и извршавање налога од стране надлежног центра управљања који се односе на објекат.

РУКОВОДИЛАЦ РАДОВА – Лице са којим облакшено лице надлежног центра управљања отвара Дозволу за рад, након чега ово лице проверава спроведене основне мере обезбеђивања места рада и спроводи даље мере за безбедан рад; такође обавештава облакшено лице надлежног центра управљања о завршетку рада.

СЕКУНДАРНА РЕГУЛАЦИЈА (ФРЕКВЕНЦИЈЕ И СНАГЕ РАЗМЕНЕ) – Централизована аутоматска функција која регулише производњу у регулационој области у оквиру резерве секундарне регулације у циљу:
- одржавања својих прекограничних токова снага у складу са програмом размене са свим осталим регулационим областима и истовремено,
- поновног успостављања фреквенције на њену подешену вредност у случају одступања фреквенције коју је узроковала регулациона област
(нарочито у случају већег одступања фреквенције коју је узроковала регулационана област, након испада веће производне јединице) ради ослобађања капацитета ангажованог од стране примарне регулације (ради поновног успостављања резерве примарне регулације).

Секундарна регулација се реализује ангажовањем одабраних агрегата у електранама које су опремљене и обухватање овом врстом регулације.

СЕКУНДАРНИ РЕГУЛАТОР – Јединствена централизована опрема оператора преносног система у свакој регулационао области која подржава рад секундарне регулације.

СИГУРАН РАД ПРЕНОСНОГ СИСТЕМА – Рад преносног система при коме су испуњени следећи услови:
1. напоји у свим чвориштима налазе се унутар нормалних радних вредности;
2. фреквенција се налази унутар опсега дефинисаног за квазистационарно стање;
3. струје оптерећења свих елемената мреже 400 kV, 220 kV, 110 kV нису веће од трајно дозвољених вредности за те елементе;
4. струје кратких спојева у свим чворовима нису веће од максималних дозвољених вредности за опрему инсталисана у датом чворишту;
5. обезбеђен је одговарајући опсег за примарну, секундарну и терцијарну регулацију;
6. критеријум „N-1“ је задовољен, а у случају његовог нарушувања постоји могућност поновног успостављања у најкраћем могућем времену;
7. сви синхрони генератори раде у режимима сходно њиховим погонским дијаграмима.

СИНАХРОНА ОБЛАСТ – Скуп међусобно електрично повезаних регулационих области, по правилу чланица одговарајућег удружења. У оквиру синхроне области системска фреквенција је јединствена у стационарном стању.

СИНХРОНО ВРЕМЕ – Фиктивно време засновано на системској фреквенцији у синхроној области које је једном подешено у односу на астрономско време. Уколико синхроно време предњачи у односу на астрономско то значи да је системска фреквенција у просеку већа од 50 Hz и обратно.

СИСТЕМ SCADA – Систем за прикупљање и обраду података који се у реалном времену достављају са преносних и објеката корисника преносног система. Користи се за надзор рада, даљинско командовање и друге аспекте управљања преносним системом.

СИСТЕМСКЕ ЗАШТИТЕ – Подфреквентна заштита, заштита од преоптерећења, заштита од трајне несиметрије струја, заштита од њихања снаге и напонске заштите. Ове заштите првенствено служе за очување сигурности рада преносног система.

СОПСТВЕНА ПОТРОШЊА – Дело потрошње објеката неопходан за његов поуздан рад. Обично се ова потрошња одваја од остalog дела потрошње и напаја преко издвојених сабирниц унутар објекта. Такође је уобичајено да се за ову потрошњу обезбеђују посебне везе са преносном мрежом, односно дистрибутивном мрежом, као и извори независног напајања.

СТАБИЛНОСТ – Стабилност преносног система је способност система да за дато иницијално оперативно стање поврати стање оперативне равнотеже након што је био изложен физичком поремећају, при чему је већина променљивих величина система ограничена тако да практично оце систем остаје целовит.
СТАТИЗАМ ГЕНЕРАТОРА – Један од параметара подешења на турбинском регулатору. Он је једнак количнику релативног квазистационарног одступања фреквенције у преносној мрежи и релативне промене излазне снаге генератора узроковане деловањем примарног регулатора.

ТЕХНИЧКИ ГУБИЦИ У ПРЕНОСНОЈ МРЕЖИ – Губици снаге, односно електричне енергије који су последица утрошка снаге, односно енергије, на загревање елемената у преносној мрежи услед постојања активног отпора у овим елеменатима (Цулови губици), губици услед хистерезиса, губици услед вртложних струја, губици од струја одвода у изолацији, губици услед короне и диелектрични губици.

ТЕХНИЧКИ СИСТЕМ УПРАВЛЯЊА – Систем за размену и обраду података који се преносе између објеката и центара управљања, као и између самих центара управљања са циљем да се обезбеде услови за управљање преносним системом.

ТЕРИЦИЈАРНА РЕГУЛАЦИЈА – Активирање терцијарне резерве у циљу поновног успостављања резерве секундарне регулације или за потребе редиспечинга.

ТИПОВИ ЕЛЕКТРАНА – Овим Правилима разлику се следећи типови електрана: проточне, акумулационе и реверзибилне хидроелектране, термоелектране на угљ и гас, ветроелектране и остала електране.

ТРОФАЗНО АПУ – Циклус рада заштите и уређаја (функције) за аутоматско поновно укључење (АПУ) који вишефазне кварове (кратке спојеве и земљоспојеве) искључује трофазно и после безнапонске паузе укључује све три фазе.

ТУРБИНСКИ РЕГУЛАТОР – Децентрализовани, локално инсталисани регулациони уређај за регулисање вентила турбине.

ТУРБОГЕНЕРАТОРСКА ЈЕДИНИЦА – Генераторска јединица у термоелектрани.

УПРАВЉАЊЕ ПРЕНОСНИМ СИСТЕМОМ – Скуп акција којим се обезбеђује функција преносног система у нормалним условима рада, односно повратак овог система у нормалан, односно сигуран рад након појаве поремећаја. Управљање преносним системом спроводи се из центара управљања оператора преносног система. Управљање преносним системом обухвата регулативу фреквенције и снаге размене, регулацију напона, надзиравања рада преносног система, санирање поремећаја, прикупљање података и друго.

УПРАВЉАЊЕ ПОТРОШЊА – Потрошња која се по налогу оператора преносног система може укључивати, искључивати, односно мењати на основу уговора о системским услугама, Правида о раду преносног система и Правила о раду тржишта електричне енергије.

ФАКТОР СНАГЕ – Косинус фазне разлике између напона и струје.

ХАВАРИЈА – Вар већег обима, билан поремећај функције или знатно оштећење објеката, дела објекта или преносног система. Хаварије настају као последица кварова или оштећења на угађеној високонапонској и другој опреми, односно елементарних непогода и несрећа или других непредвидивих и изненадних догађаја. Хаварије по правилу имају за последицу смањену пузнданост и сигурност рада опреме, односно преносног система, што може угрозити безбедност и здравље људи, као и имовину, због чега је неопходно хитно отклањање узрока и последица хаварије.

ХАВАРИЈСКА ЕНЕРГИЈА – Енергија коју набавља оператор преносног система у циљу очувања, односно поновног успостављања нормалног рада унутар своје регулационе области.

ХИДРОГЕНЕРАТОРСКА ЈЕДИНИЦА – Генераторска јединица у хидроелектрани.
ЦЕНТАР УПРАВЉАЊА КОРИСНИКА ПРЕНОСНОГ СИСТЕМА – Диспчерски центар, електрокоманда или неки други објекат са особљем овлашћеним за управљање објектом, односно делом електроенергетског система под надлежношћу корисника преносног система. Надлежност овог центра проистиче из закона, припадајућих подзаконских аката и одговарајућих уговора.

ФЛИКЕР – Дисторзија напонског таласа која произилази од непријатан осећај у чулима вида која су изложена дејству уређаја за осветљење напајаним напоном који флуктуира.

2.2. СКРАЋЕНИЦЕ

2.2.1. Ћириличне скраћенце употребљене у Правилима имају следећа значења:
 АПУ – аутоматско поновно укључење;
 ЕЕС – електроенергетски систем;
 ЕМС АД – Акционарско друштво „Електромрежа Србије”, Београд.

2.2.2. Латиничне скраћенце употребљене у Правилима имају следећа значења:
 CET – Central European Time (Средњеевропско време);
 ENTSO-E – European Network Transmission System Operators - Electricity;
 GIS – Gas Insulated Switchgear (гасом изолована расклопна опрема);
 GPS – Global Positioning System (глобални систем за позиционирање);
 IEC – International Electrotechnical Commission (Међународна електротехничка комисија);
 MMS – Market Management System (систем за управљање тржиштем електричне енергије);
 OBIS – Object Identification System (систем за идентификацију електричних величина);
 SCADA – Supervisory Control and Data Acquisition (систем за управљање и прикупљање података).
ПОГЛАВЉЕ 3: ПЛАНИРАЊЕ РАЗВОЈА ПРЕНОСНОГ СИСТЕМА

3.1. УВОД

3.1.1. Планирањем развоја преносног система сагледава се неопходан развој преносног система и одређени услови у којима ће се рад овог система одвијати у наступајућем периоду, како би се одредиле мере за обезбеђивање нормалног рада преносног система.

3.1.2. Планирана изградња, реконструкција и доградња преносних објеката мора обезбедити предуслове за развој производних и дистрибутивних капацитета, тржишта електричне енергије и поуздану испоруку електричне енергије за прогнозирани ниво потрошње.

3.1.3. Поред критеријума за обезбеђивање нормалног рада преносног система, ЕМС АД током планирања развоја преносног система води рачуна и о свим релевантним економским показатељима како би се трошкови оптималног развоја преносног система свели на минимум.

3.1.4. У овом поглављу су прецизиране технички критеријуми, подлоге и подаци који се користе приликом планирања развоја преносног система, периоди за које се израђују Планови развоја преносног система и садржај ових планова.

3.2. ТЕХНИЧКИ УСЛОВИ ЗА СИГУРАН И ПОУЗДАН РАД ПРЕНОСНОГ СИСТЕМА

3.2.1. УВОД

3.2.1.1. Технички услови за сигуран и поуздан рад преносног система којима се ЕМС АД руководи приликом планирања развоја преносног система су општи критеријуми који су релевантни за све техничке функције које ЕМС АД обавља на основу закона и осталих општих аката.

3.2.1.2. Исти технички услови се уважавају и приликом прикључивања, односно повезивања објеката на преносни систем, планирања рада преносног система и управљања преносним системом.

3.2.2. ПРЕНОСНИ КАПАЦИТЕТ

3.2.2.1. Преносни капацитет, односно трајно дозвољено струјно, термично оптерећење свих далековода и трансформатора у мрежи 400 kV, 220 kV, 110 kV мора се израчунати на основу:
- техничких спецификација;
- очекиваних услова погона;
- техно-економских услова експлоатације;
- актуелног стања далековода, односно трансформатора.

3.2.2.2. Прорачун преносног капацитета елемената мреже 400 kV, 220 kV, 110 kV ЕМС АД врши према:
- трајно дозвољеним вредностима струја фазних проводника за надземне водове и каблове;
- вредности називне снаге, односно струје за трансформаторе.
3.2.2.3. Сву пратећу опрему везану у далеководним или трансформаторским пољима у мрежи 400 kV, 220 kV, 110 kV (као што су струјни мерни трансформатори, растављачи, прекидачи и остала опрема) потребно је димензионисати тако да не представља ограничење за преносни капацитет у планираном уклопном стању, који је одређен у складу са одредбом 3.2.2.2, осим у случају када се перспективно не могу сагледати оптерећења која захтевају такво димензионисање наведене опреме.

3.2.3. НАПОЊ

3.2.3.1. Називне вредности напона у преносној мрежи Републике Србије су: 400 kV, 220 kV и 110 kV.

3.2.3.2. Вредност напона у нормалним условима рада у било којој тачки мреже 400 kV, 220 kV, 110 kV налази се у опсегу:
- 400 kV мрежа: између 380 kV и 420 kV;
- 220 kV мрежа: између 198 kV и 242 kV;
- 110 kV мрежа: између 99 kV и 121 kV.

3.2.4. ФРЕКВЕНЦИЈА

3.2.4.1. Називна вредност фреквенције износи 50 Hz. Када преносни систем Републике Србије ради у оквиру интерконекције, на дозвољена одступања од називне вредности фреквенције у преносној мрежи примењују се вредности из правила о раду интерконекције.

3.2.4.2. У случају да преносни систем Републике Србије ради изоловано од суседних преносних система, дозвољена фреквенција у преносној мрежи у квазистационарном стању је 50 Hz ± 0,5 Hz.

3.2.5. КРИТЕРИЈУМ СИГУРНОСТИ „N–1”

3.2.5.1. Критеријумом сигурности „N–1” може се предвидети испад потрошње, под условом да је предвиђен и ограничен на локалну област.

3.2.5.2. Критеријум сигурности „N–1” се не примењује на радијално напајану потрошњу.

3.2.5.3. Испади сабирница и спојних поља не узимају се у обзир приликом анализе задовољености критеријума сигурности „N–1”.

3.2.5.4. Критеријум сигурности „N–1” проверава се на моделима, који поред преносног система ЕМС АД обухватају и модели других преносних система, у складу са правилима о раду интерконекције.

3.2.6. СТРУЈЕ КРАТКИХ СПОЈЕВА

3.2.6.1. Опрема у преносним и објектима корисника преносног система мора бити димензионисана да задовољи прорачунате вредности струја кратких спојева.

3.2.6.2. У случају кратког споја не сме се наруши стабилност ран преносног система.

3.2.7. СТАБИЛНОСТ

3.2.7.1. Мора се обезбедити да преносни систем ради у условима задовољене стабилности. У том смислу се анализирају следеће врсте стабилности:
- стабилност угла ротора када је систем изложен малим и великим поремећајима у кратком временском интервалу;
- фреквенцијска стабилност у кратком и дугом временском интервалу;
- напонска стабилност када је систем изложен малим и великим поремећајима у кратком и дугом временском интервалу;
а у складу са дефиницијама у класификацијом IEEE/CIGRE. За кратак временски интервал се усваја првих 3-5 секунди након наступања поремећаја, односно 10-20 секунди за веома велике системе са доминантним осцилацијама између области. За дуги временски интервал се усваја првих 30 секунди за осцилације синхронизационе снаге између машина, односно 15 минута након наступања поремећаја за прелазне процесе секундарне регулације.

3.3. ПЛАН РАЗВОЈА ПРЕНОСНОГ СИСТЕМА

3.3.1. НАЧИН ПЛАНИРАЊА РАЗВОЈА ПРЕНОСНОГ СИСТЕМА

3.3.1.1. ЕМС АД сваке године израђује и објављује План развоја преносног система. План развоја преносног система израђује се за наступајући десетогодишњи период, са сагледавањем инвестиционих потреба за првих пет година понасособ, а за преосталих пет индикативно.

3.3.1.2. Развој преносног система се планира тако да се омогући што флексибилнији рад производних капацитета у свим предвидивим режимима рада преносног система.

3.3.1.3. Планирање преносног система мора уважити и потребе задовољења будуће потрошње свих корисника преносног система.

3.3.1.4. Перспективни преносни систем мора задовољити и потребе размене електричне енергије на тржишту електричне енергије.

3.3.1.5. План развоја преносног система садржи податке о кретању укупне потрошње и производње са посебним освртом на значајне измене, појаву нових, или гашење постојећих објеката корисника преносног система.

3.3.1.6. ЕМС АД усаглашава развој преносне мреже са развојем дистрибутивних мрежа, и у том смислу сарађује са операторима дистрибутивног система. Том приликом се осим испуњености техничких критеријума у преносном систему води рачуна и о:

- - квалитету испоруке електричне енергије дистрибутивним објектима радијално повезаним са преносним системом;
- постојању резервног правца за напајање радијално напајаних дистрибутивних објеката у оквиру самог дистрибутивног система;
- потреби за изналажење економски оптималног решења са становишта оба оператора система.

3.3.1.7. ЕМС АД усаглашава развој преносне мреже са развојем дистрибутивних мрежа, и у том смислу сарађује са операторима дистрибутивног система. Том приликом се осим испуњености техничких критеријума у преносном систему води рачуна и о:

- - обезбеди своебухватан преглед развоја преносног система у датом временском интервалу;
- омогући преглед главних измена у преносном систему (списак, локације и основе карактеристике преносних објеката који ће бити реконструисани, проширени или изграђени, односно угашени, укључујући и интерконективне далеководе).

3.3.1.8. ЕМС АД сарађује са европским операторима преносног система у изради паневропског десетогодишњег плана развоја преносне мреже, регионалног инвестиционог плана, као и извештаја о прилагођености производње, а у складу са правилима о раду интерконекције.
3.3.1.9. ЕМС АД, на основу забележених историјских података, података који поднесу корисници преносног система и поднетих захтева за прикључење на преносни систем израђује математички модел потрошње (по активној и реактивној снази) у свим местима прикључења. Приликом моделовања потрошње, ЕМС АД по правилу израђује више различитих сценарија везаних за будућу потрошњу, који покривају различите економске правце развоја Републике Србије, тиме обезбеђујући проверу флексибилности, односно осетљивости планираних пројеката у преносном систему.

3.3.1.10. На основу параметара преносног система ЕМС АД математички моделије преносни систем. Овај модел мора уважити реална струјна ограничења на свим елементима преносног система и подешења системских заштита.

3.3.1.11. Приликом моделовања производње, ЕМС АД по правилу израђује више различитих сценарија могућег развоја производног система Републике Србије, обезбеђујући проверу флексибилности, односно осетљивости планираних пројеката у преносној мрежи. Такође, ЕМС АД уважава забележена ограничења у раду ових јединица која одступају од називних параметара, као и њихове нерасположивости. На одговарајући начин се уважавају ограничења која су присутна у дужем временском периоду, као и ограничења која се повремено појављују. Такође се третира и учестаност ових појава.

3.3.1.12. ЕМС АД архивира све погонске догађаје који су од интереса за планирање развоја преносног система. На основу ове архиве, ЕМС АД одређује које ће све распореде производње и потрошње укључити у анализе које се изводе у циљу планирања развоја преносног система.

3.3.1.13. Приликом анализа режима рада преносног система уважава се информације о планираним нерасположивостима производних јединица и елемената преносне мреже.

3.3.1.14. ЕМС АД обавештава до 31. јануара текуће године све кориснике преносног система (укључујући и будући корисници преносног система којима је потврдно одговорено на захтев за прикључење објекта на преносни систем) о подацима којим му се морају доставити у циљу израде Плана развоја преносног система (подаци неопходни за планирање развоја су обухваћени Прилогом А: Стандардни подаци). Достављање података врши се у формату који одреди ЕМС АД.

3.3.1.15. Корисници преносног система достављају ЕМС АД најкасније до 30. априла текуће године све тражене податке из тачака 3.3.1.14.

3.3.1.16. На посебан захтев ЕМС АД, корисници преносног система достављају и друге неопходне податке у циљу моделовања објеката корисника преносног система, односно делова дистрибутивне мреже.

3.3.1.17. Подаци неопходни за планирање развоја преносног система морају се изменити ако првобитно пријављене вредности не одговарају реалности. У таквим случајевима ЕМС АД ће од корисника преносног система захтевати исправке у подацима, а ако овај корисник не достави задовољавајуће исправке, ЕМС АД мена спорне податке на основу забележених погонских догађаја.

3.3.1.18. Уколико дође до измене у подацима неопходним за планирање, корисник преносног система обавештава ЕМС АД о тим изменама у року од месец дана након измене података. Корисник назначава време када је промена наступила или ће наступити, или ако је измена привременог каракtera, време почетка и краја измене.

3.3.1.19. ЕМС АД је обавезан да нацрт Плана развоја преносног система да на увид операторима дистрибутивног система до 1. септембра и изврши усаглашавање са
плановима развоја дистрибутивног система до 15. септембра. Уколико се усаглашавање не може изршити у потпуности, у План развоја преносног система уносе се неопходни подаци који обухватају списак објеката за које усаглашавање није извршено и разлоге за неусаглашено стање наведених планова.

3.3.1.20. ЕМС АД израђује План развоја преносног система до краја септембра у години која претходи првој години на коју се овај десетогодишњи план односи и објављује га по добијању сагласности АЕРС.

3.3.2. САДРЖАЈ ПЛАНА РАЗВОЈА ПРЕНОСНОГ СИСТЕМА

3.3.2.1. Увод

3.3.2.1.1. План развоја преносног система садржи:

- планске претпоставке (прогнозирана потрошња енергије и вршина снага по по годинама, расподаја потрошње по потрошачким чворовима, планирана структура производних капацитета);
- резултате анализа стања објеката, опреме и рада преносног система;
- оптималну варијанту развоја преносног система у планском периоду која је одређена на основу техно-економских анализа;
- листу преносних објеката по годинама и приоритетима које је потребно изградити, реконструисати или доградити;
- план развоја преносних објеката (систем теле комуникација, технички систем управљања, систем за мерење електричне енергије и друго);
- испитивање прилагођености производње;
- испитивање могућности регулације фреквенције и снаге размене;
- анализе могућности регулације напона;
- анализе стабилности;
- анализе струја кратких спојева.

3.3.2.2. Развој преносне мреже

3.3.2.2.1. За израду Плана развоја преносног система неопходно је добити усаглашен скуп улазних података. Уколико се појаве битнија одступања између различитих извора података, за усвојени скуп података се даје објаснение.

3.3.2.2.2. Први корак у изради Плана развоја преносног система је анализи постојећег стања преносне мреже (старост објеката, нерасположивост појединих елемената преносне мреже, уочена загушења и евидентирани погонски догађаји), као и анализе сигурности и поузданости за оваако стање преносне мреже. Други корак је анализи преносне мреже у коју су укључени сви објекти чија је изградња у току на основу предходних планова развоја, уважавајући године уласка у погон. На основу ових анализа, одређују се варијантна решења за изградњу нових преносних објеката, те реконструкцију и повећање преносног капацитета постојећих елемената преносне мреже. Уважавајући предложена решења по варијантама, процес се понавља до краја планског периода.

3.3.2.2.3. За свако варијантно решење дефинишу се трошкови амортизације, одржавања и губитака, а потом се спроводи економско поређење варијанти и евалуација оптималне варијанте развоја преносне мреже.

3.3.2.2.4. Нови интерконективни далеководи се планирају на основу системских студија и студија оправданости, којима се сагледава шири утицај планираног далековода,
обзиром да се одлука о изградњи ових елемената преносне мреже доноси на основу сагласности суседних оператора преносног система.

3.3.2.2.5. Дефинисање коначног Плана развоја преносног система по годинама, обухвата план за изградњу нових преносних објеката, реконструкцију постојећих преносних објеката и изградњу нових интерконективних далековода, са потребним средствима за инвестиције по годинама.

3.3.2.2.6. У План развоја преносног система се, као информације од посебног значаја, укључују и подаци о местима потенцијалних загушења у преносној мрежи (листа преносних елемената за које се претпоставља да ће бити изложени честим преоптерећењима).

3.3.2.2.7. Уколико се оцени да пратећа опрема везана на далековод или трансформатор у преносној мрежи представља ограничење у основном стању или након једноструког испада елемената преносне мреже, ЕМС АД мора у План развоја преносног система унети податке о опреми у преносним и дистрибутивним објектима, која ограничава проток снаге кроз преносну мрежу и која се из тих разлога мора правовремено заменити.

3.3.2.3. Прилагођеност производње

3.3.2.3.1. Уколико се приликом анализирања прилагођености производње установи немогућност обезбеђивања преносног биланса (недостатак или значајан вишак производње електричне енергије у односу на потрошњу) ова информација се мора посебно нагласити у Плану развоја преносног система.

3.3.2.4. Регулација фреквенције и снаге размене

3.3.2.4.1. У сваком временском профилу за који се планирање врши, испитује се да ли је резерва примарне, односно секундарне, односно терцијарне регулације на нивоу преносног система већа од Прописаних минималног износа те резерве.

3.3.2.4.2. Уколико перспективна резерва терцијарне регулације не задовољава прописани износ, приликом испитивања прилагођености из одељка 3.3.2.3. Правила, за обезбеђивање ове резерве мора се предвидети одговарајући увозни преносни капацитет на интерконктивним далеководима.

3.3.2.5. Регулација напона

3.3.2.5.1. Ако се идентификују потенцијални проблеми по питању регулације напона, ЕМС АД у План развоја преносног система уноси мере које су у оквиру надлежности ЕМС АД, односно узрокована узроковани неправилним радом објеката корисника преносног система (на пример недозвољен фактор снаге потрошње) и одступања од номиналних техничких карактеристика (трајна ограничења генераторских јединица у односу на пројектоване параметре, односно параметре прописане Прописаним у смислу регулације напона и слично).

3.3.2.6. Стабилност

3.3.2.6.1. ЕМС АД по потреби, а најмање једном у пет година, у План развоја преносног система укључује и стабилност преносног система.
производним јединицама, преподешења и уградња примарних регулатора и регулатора напона, сетовање секундарног регулатора итд.).

3.3.2.7. Струје кратких спојева

3.3.2.7.1. Струје кратких спојева у објектима корисника преносног система прорачунавају се приликом израде Плана развоја преносног система уколико се сагледавају потенцијалне велике промене услед предвиђених измена у преносном систему и производњи, односно на изричит захтев корисника преносног система. У супротном, ЕМС АД има обавезу да за сваки објекат корисника преносног система провери струје кратких спојева најмање једном у пет година.

3.3.2.7.2. Уколико ЕМС АД оцени да перспективне вредности струја кратких спојева (услед развоја преносног система) могу угрозити постојећу инсталирану опрему у преносним и објектима корисника преносног система, ЕМС АД предузима мере у преносним објектима и договара мере са корисницима преносне мреже које је потребно предузети у објектима корисника. Наведене мере првенствено обухватају припрему планова за замену угрожене опреме, одређивање нових уклопних стања у преносној мрежи и објектима корисника, те успостављање надзора над струјама кратког споја у реалном времену.

3.4. САДРЖАЈ ПЛАНА ИНВЕСТИЦИЈА У ПРЕНОСНИ СИСТЕМ

3.4.1. ЕМС АД сваке године израђује План инвестиција у преносни систем, за период до три године, усклађен са планом инвестиција дистрибутивних система.

3.4.2. План инвестиција у преносни систем садржи нарочито:
- назив, тип и врсту објекта са шифром инвестиција и кратким описом планираних активности;
- вредност опреме, услуга и радова;
- процењену вредност сваке инвестиције за наредне три године;
- динамику финансијске реализације плана инвестиција;
- изворе финансирања;
- реализација плана инвестиција које су у току.
ПОГЛАВЉЕ 4: ТЕХНИЧКИ УСЛОВИ ЗА ПРИКЉУЧЕЊЕ И ЗА ПОВЕЗИВАЊЕ НА ПРЕНОСНИ СИСТЕМ

4.1. УВОД

4.1.1. Сврха техничких услова за прикључење и за повезивање објеката на преносни систем је стварање неопходних предусловка за нормалан рад преносног система и прецизно дефинисање обавеза ЕМС АД и корисника преносног система.

4.1.2. Технички услови прикључења и повезивање који се односе на мерење електричне енергије обрађени су у поглављу 8. Мерење електричне енергије.

4.1.3. За техничке услове који нису експлицитно дефинисани Правилима, ЕМС АД се може позвати на српске и следеће међународне стандарде и препоруке:
- IEC (International Electrotechnical Commission);
- EN (European Standards);
- CENELEC (European Committee for Electrotechnical Standardization);
- ISO (International Organisation for Standardisation);
- CIGRE (Conference Internationale des Grands Reseaux Electriques).

У недостацку међународних стандарда, могу се такође користити признати национални стандарди по следећем реду:
- VDE (Verbund Deutscher Elektrotechniker);
- BS (British Standard);
- IEEE (Institute of Electrical and Electronics Engineers);
- NFPA (National Fire Protection Association);
- NF (Norme Francaise);
- ГОСТ (Государствени Стандард).

4.2. ТЕХНИЧКИ УСЛОВИ ЗА ПРИКЉУЧЕЊЕ И ПОВЕЗИВАЊЕ СВИХ ВРСТА ОБЈЕКАТА

4.2.1. ТЕХНИЧКИ КРИТЕРИЈУМИ

4.2.1.1. Технички критеријуми из одељка 3.2. Правила морају бити задовољени након прикључења објекта корисника преносног система.

4.2.2. ШЕМА ПРИКЉУЧЕЊА И ПОВЕЗИВАЊА

4.2.2.1. ЕМС АД актом којим се уређује прикључење, односно повезивање, одређује шему прикључења, односно повезивања објекта.

4.2.2.2. Један објекат може се прикључити или повезати на више праваца. За сваки од ових праваца мора се обезбедити одговарајућа расклопна опрема, заштитна, мерна и опрема за управљање у делу који припада преносној мрежи и у делу који припада објекту корисника преносног система.

4.2.2.3. Шема прикључења, односно повезивања објекта се одређује на основу свих расположивих података и предлога, а у циљу типизације постројења. При томе се узима у обзир:
- једнополна шема објекта и прикључка (за случај прикључења);
- логонске карактеристике објекта и технолошки процес;
- уобичајене оперативне процедуре за ову врсту објекта;
- могућност испоруке електричне енергије објекту корисника преносног система из дистрибутивне или друге мреже;
- потрошња објекта током нормалног погона или током било каквих предвидивих промена.

4.2.2.4. Шема прикључења, односно повезивања мора предвидети:
- перспективни развој објекта и преносног система;
- прекидач одаховрајућих техничких карактеристика који омогућавају селективно искључивање далековода, трансформатора и система сабирница у објекту корисника преносног система и суседним објектима;
- растављаче (излазни и сабирнички за далеководе, сабирнички за трансформаторе и спојна поља);
- ножеве за уземљење (за далеководна поља, 400 kV поља трансформатора, као и за 400 kV сабирнице);
- мерну опрему;
- телекомуникациону опрему која може утицаћи на преносни капацитет елемената мреже 400 kV, 220 kV, 110 kV.

4.2.2.5. Свака веза између објекта корисника преносног система и преносне мреже мора бити управљана преко прекидача који је у стању да прекида максималне струје кратких спојева на месту прикључења, односно повезивања.

4.2.2.6. Координација изолације свих прекидача, растављача, ножева за уземљење, енергетских трансформатора, напонских трансформатора, струјних трансформатора, одводника препона, изолатора, опреме за уземљење неуравновешене тачке, кондензатора, ВФ пригушница и спојне опреме, мора бити у складу са IEC стандардима.

4.2.3. НАПОН

4.2.3.1. Објекат корисника преносног система мора трајно остати у погону у вези са преносном мрежом за описе напона из одељка 3.2.3. Правила.

4.2.3.2. У случају одступања напона ван опсега из одељка 3.2.3. Правила, објекат корисника преносног система остаје у погону повезан са преносном мрежом за време које зависи од величине одступања напона, а према следећим условима:
- за генераторске јединице у складу са тачком 4.3.8.2.1.
- за објекте купаца и дистрибутивне објекте за време које је 50% веће у односу на време које се односи на генераторске јединице при истом одступању напона.

4.2.3.3. У случају пропада напона у преносној мрежи услед појаве кратког споја, објекат корисника преносног система мора остати у погону повезан са преносном мрежом према следећим условима:
- ако је напон у месту прикључења, односно повезивања једнак 0 V, објекат остаје у погону најмање 0,15 s;
- ако је напон у месту прикључења, односно повезивања једнак U_{min} називне вредности, објекат остаје у погону најмање 1,5 s;
- ако је напон у месту прикључења, односно повезивања већи од U_{min}, објекат остаје у погону до искључења кvara;
- за вредности напона између 0 и 90% називне вредности, време се одређује линеарном интерполацијом у складу са сликом 4.1.
U_{min} је минимални радни напон за који објекат корисника преносног система мора остати у погону повезан са преносном мрежом у складу са тачком 4.2.3.2.

Слика 4.1.

4.2.3.4. У случају повишења напона у преносној мрежи, објекат корисника преносног система мора остати у погону у вези са преносном мрежом према следећим условима:
- за време до 50 ms, објекат остаје у погону ако је напон у месту прикључења, односно повезивања мањи или једнак 120% називне вредности;
- за време између 50 ms и 1000 ms, објекат остаје у погону за напон који је мањи или једнак износу који се одређује на основу линеарне интерполације, у складу са сликом 4.2. при чему је U_{max} максимална вредност напона у нормалним условима рада, уређена одељком 3.2.3 ових Правила.

Слика 4.2.

4.2.4. ФРЕКВЕНЦИЈА

4.2.4.1. Објекат мора бити пројектован и изведен тако да може трајно да поднесе погон у опсегу фrekвенције 49,5 – 50,5 Hz.
4.2.4.2. Уколико је фреквенција ван прописаног опсега, објекат корисника преносног система остаје у погону повезан са преносном мрежом за време које зависи од величине одступања фреквенције, а према следећим условима:
- за генераторске јединице у складу са тачком 4.3.8.1.1.
- за објекте купаца и дистрибутивне објekte за време које је 50% веће у односу на време које се односи на генераторске јединице при истом одступању фреквенције.

4.2.4.3. Одредбе одељка 4.2.4. не односе се на искључења објеката дејством подфрактневне заштите.

4.2.5. УРЕЂАЈ ЗА КОНТРОЛУ УКЉУЧЕЊА ПРЕКИДАЧА

4.2.5.1. Уколико прорачуни токова снага и напона указују да се могу очекивати тешкоће при укључењу прекидача у објекту корисника преносног система, ЕМС АД захтева инсталирање уређаја за контролу укључења прекидача у овом објекту. Овај уређај се подешава према следећим параметрима синхронизације укључења:
- максимална разлика модула напона: \(\Delta U_{\text{max}} = 15\% U_{n} \);
- максималана фазна разлика између напона: \(\Delta \varphi_{\text{max}} = 30^\circ \);
- максимална разлика фреквенције: \(\Delta f_{\text{max}} = 0,5 \text{ Hz} \).

4.2.5.2. Уређај за контролу укључења прекидача мора бити изведен тако да се може вршити читање параметара синхронизације укључења.

4.2.6. ПРЕУЗИМАЊЕ РЕАКТИВНЕ СНАГЕ ИЗ ПРЕНОСНЕ МРЕЖЕ

4.2.6.1. Корисник преносног система мора осигурати услове да током нормалног рада његовог објекта, однос реактивне и активне снаге коју преузима из преносне мреже у месту прикључења, односно повезивања буде мањи од 0,33 за сваки петнаестминутни интервал у коме мерна опрема бележи размену реактивне и активне енергије, осим за места прикључења генераторских јединица што је посебно уређено Правилима у одељку 4.2.7.

4.2.7. КВАЛИТЕТ НАПОНСКОГ ТАЛАСА

4.2.7.1. Струјна несиметрија

4.2.7.1.1. Струјна несиметрија коју изазива објекат корисника преносног система не сме превазилазити:
- 2%, ако је објекат прикључен, односно повезан на 110 кВ;
- 1,4%, ако је објекат прикључен на 220 кВ мрежу;
- 0,8%, ако је објекат прикључен на 400 кВ мрежу.

4.2.7.1.2. Изузетно, код објеката прикључених на преносну мрежу 110 кВ који служе за напајање мрежа железнице (тзв. електровучне подстанице) ЕМС АД у Решењу о прикључењу може унети за вредност струјне несиметрије износ који превазилази 2%, под условом да се тиме не угрожава приступ преносном систему осталих корисника преносног система, односно да се не угрожавају предуслови за нормалан рад преносног система.

4.2.7.2. Виши хармоници

4.2.7.2.1. Струје виших хармоника које изазива објекат корисника преносног система у месту прикључења, односно повезивања у мрежи 110 кВ и 220 кВ не смеју прелазити вредност:
\[I_{hn} = k_n \frac{S_s}{\sqrt{3}U_{nom}} \]

gде су:

- \(I_{hn} \) - струја \(n \)-тог хармоника;
- \(k_n \) – коefфицијент \(n \)-тог хармоника (одређује се према табели 4.1);
- \(S_s \) – максимална привидна снага у датом месту прикључења, односно повезивања, (израчуната на основу уређене одобрене снаге и фактора снаге), уколико је она мања од 5% привидне снаге трофазног кратког споја; уколико то није случај, \(S_s \) износи 5% привидне снаге трофазног кратког споја;
- \(U_{nom} \) – називни напон преносне мреже у месту прикључења, односно повезивања.

4.2.7.2.2. Ако је објекат прикључен на 400 kV мрежу, добијене вредности струја \(I_{hn} \) из тачке 4.2.7.2.1. се множе са 0,6.

<table>
<thead>
<tr>
<th>Редни број непарног хармоника</th>
<th>(k_n [%])</th>
<th>Редни број парног хармоника</th>
<th>(k_n [%])</th>
<th>(k_n [%])</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6,5</td>
<td>2</td>
<td>3</td>
<td>Укупан износ 8</td>
</tr>
<tr>
<td>5 и 7</td>
<td>8</td>
<td>4</td>
<td>1,5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>> 4</td>
<td>1</td>
<td>(T_g = \sqrt{\sum_{n=2}^{40} k_n^2})</td>
</tr>
<tr>
<td>11 и 13</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 13</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2.7.3. Фликери

4.2.7.3.1. Фликери узроковани од стране објекта корисника преносног система не смеју прелазити вредност:

- \(E_{Pst} = 0,8 \);
- \(E_{Plt} = 0,6 \);

при чему су \(E_{Pst} \) и \(E_{Plt} \) параметри дефинисани IEC стандардима 61000-3-7 који се односе на електромагненту компатибилност.

4.2.8. УЧЕШЋЕ У ПЛАНОВИМА ОДБРАНЕ ПРЕНОСНОГ СИСТЕМА

4.2.8.1. ЕМС АД актом којим се уређује прикључење, односно повезивање одређује обавезност и начин укључивања објекта у Планове одбране преносног система.

4.2.8.2. Тачан начин учешћа објекта корисника преносног система у наведеним плановима ЕМС АД утврђује накнадно, уз консултацију са кориснику преносног система.

4.2.9. КОМУНИКАЦИЈА И РАЗМЕНА ПОДАТАКА У РЕАЛНОМ ВРЕМЕНУ

4.2.9.1. ЕМС АД актом којим се уређује прикључење, односно повезивање одређује начин размене података у реалном времену и комуникације са корисником преносног система, као и начин повезивања техничких система управљања у складу са Прилогом Б.

4.2.9.2. ЕМС АД утврђује предуслове и начин размене података у реалном времену између објекта корисника преносног система и одговарајуће инфраструктуре ЕМС АД, односно:
- основне карактеристике терминалне опреме у објекту;
- начин прикључења, односно повезивања терминалне опреме на комуникациону инфраструктуру ЕМС АД;
- услове за очување неопходне располагивости система за комуникацију који користи ЕМС АД;
- протоколе за размену података у реалном времену;
- параметре којима се обезбеђује пренос података у реалном времену;
- класу тачности мерних претварача.

4.2.9.3. Мерни претварачи морају бити класе тачности 0,2.

4.2.9.4. У случају комуникације између појединачног објекта и центра управљања ЕМС АД користи се протокол IEC 60870-5-101. У случају комуникације центра управљања корисника преносног система који управља са више објеката и центра управљања ЕМС АД користи се протокол IEC 60870-6 (TASE.2).

4.2.9.5. Прикључење, односно повезивање на телекомуникациони систем ЕМС АД по правилу се врши путем оптичког система преноса типа SDH.

4.2.9.6. Корисник преносног система мора обезбедити ЕМС АД поуздан приступ излазним подацима у реалном времену. Ови подаци се морају обезбедити за:
- напоне;
- струје;
- токове активне и реактивне снаге;
- фреквенцију;
- позиције регулационе склопке регулатора напона трансформатора;
- информације о статусу расклопне опреме;
- сигнале аларма;
за све елементе у објекту корисника преносног система сврстане у прву, другу или трећу групу Категоризације, као и оне који су у директној галванској вези са наведеним елементима.

4.2.10. ЦЕНТАР УПРАВЉАЊА КОРИСНИКА ПРЕНОСНОГ СИСТЕМА

4.2.10.1. Корисник преносног система мора да декларише сопствени центар управљања за објекат за који се подноси захтев за одобравање прикључења на преносни систем. Овај центар је у смислу управљања подређен надлежном центру управљања ЕМС АД.

4.2.10.2. Центар управљања корисника преносног система мора бити непрестано у функцији.

4.2.10.3. Корисник преносног система обезбеђује даљинску команду непосредно из свог центра управљања:
- прекидачима 400 kV, 220 kV и 110 kV;
- растављачима 400 kV, 220 kV и 110 kV;
- позицијама регулатора напона трансформатора 400/x kV, 220/x kV и 110/x kV (контрола напона на нисконапонској страни објекта као предуслов за спровођење напонских редукција);
- прекидачима у ниженапонском постројењу (као предуслов за спровођење ограничења испоруке електричне енергије).

4.2.10.4. Центар управљања корисника преносног система поседује и:
- најмање две независне говорне везе са центrimа управљања ЕМС АД (основним и резервним);
- факс или електронску адресу (E-mail);
4.2.10.5. Центар управљања оператора дистрибутивног система, односно центар управљања објекта који на напону нижем од 110 kV има производне јединице чија укупна инсталисана снага превазилази 5 MW, мора бити опремљен да надлежном центру управљања ЕМС АД доставља и податке у реалном времену о укупној производњи у дистрибутивном систему, односно објекту.

4.2.11. ЗАШТИТА

4.2.11.1. Увод

4.2.11.1.1. ЕМС АД одређује систем заштите објекта који се прикључује, односно повезује, као и обавезе ЕМС АД и корисника преносног система да врше координацију подешавања заштита у функцији преноса, како у процесу планирања развоја, тако и у поступку планирања рада и експлоатације преносног система.

4.2.11.1.2. При избору заштита приликом реконструкције појединих поља у објекту, неопходно је да се уваже специфичности већ уgraђене опреме, а посебно услови које може захтевати постојећи технички систем управљања.

4.2.11.1.3. Заштита мора бити пројектована тако да се омогући брзо и селективно искључење кварова са циљем да се сачува опрема у преносним објектима и објектима корисника преносног система од трајних оштећења, односно да се сведу на најмању могућу меру последице кварова или нерегуларних догађаја у преносном систему и да се одржи стабилан рад преносног система.

4.2.11.1.4. Да би се обезбедио поуздан рад заштите неопходно је да сваки главни заштитни уређај има одговарајућу резерву, удаљену или локалну.

4.2.11.1.5. Заштитни уређаји су савремени микропроцесорски уређаји за заштиту који, поред функција заштите, имају и могућност:

- хронолошке регистрације догађаја у милисекундној резолуцији;
- снимања поремећаја и кварова у мрежи са приказом радних параметара (струје, напони, фреквенција итд.) у милисекундној резолуцији;
- самонадзора.

4.2.11.1.6. Изузетно, на напонском нивоу 110 kV у објектима корисника преносног система и на напонским нивоима 110 kV, 220 kV и 400 kV уређај релејне заштите и уређај за управљање се уграђују као засебни уређаји. На нижим напонским нивоима дозвољена је употреба компактних заштитно-управљачких уређаја.

4.2.11.1.7. Уколико концепција заштите захтева комуникацију јединица заштите из различитих објеката, корисник преносног система мора испунити своје обавезе уређене актом о прикључењу, односно повезивању које се односе на наведену комуникацију најкасније 15 дана пре пуштања објекта (или дела објекта) у погон.

4.2.11.2. Избор врста заштита за мрежу 110 kV

4.2.11.2.1. При избору заштита неопходно је да се уваже специфичности већ уgraђене опреме, а посебно услови које може захтевати постојећи технички систем управљања.

4.2.11.2.2. За заштиту трансформатора 110/х kV уgraђују се гасни релеји (Бухолц заштита суда трансформатора и регулационе склопке), контактни термометар, релеј натпритиска и електричне заштите од унутрашњих и спољашњих кварова, као и заштита од преоптерећења. Неопходне заштитне функције по уређајима електричне заштите су:

а) за уређај главне заштите на 110 kV страни:
- диференцијална заштита за трансформатор;
- ограничену земљоспојну заштиту;
- „кућишна“ заштита, само као нужно алтернативно решение за ограничену земљоспојну заштиту;
- заштита од преоптерећења – термослика;
- струјна заштита од прептерећења;
- вишестепена трофазна прекострујна заштита;
- вишестепена земљоспојна заштита;
- заштита од трајне несиметрије струје;
- заштита од отказа прекидача;
- заштита од несиметрије половна прекидача (уколико није реализована унутрашњом шемом прекидача);
- контрола искључних кругова прекидача (као екстерни уређај за сваки искључни колем);

б) за уређај резервне заштите на 110 kV страни:
- вишестепена трофазна прекострујна заштита (аутономна или конвенционалне изведбе у зависности да ли се примењује једна, односно две акубатерије у ТС 110/х kV);
- вишестепена земљоспојна заштита;

в) за уређај заштите на х kV страни (х = 35, 20, 10, 6):
- вишестепена трофазна прекострујна заштита;
- вишестепена земљоспојна заштита;
- упрошћена заштита x kV сабирницица;
- вишестепена једнофазна прекострујна заштита за заштиту опреме за уземљење неутралне тачке на х kV страни;
- контрола искључних кругова прекидача (као екстерни уређај или интерна функција у заштитном уређају).

4.2.11.2.3. За заштиту далековода 110 kV, потребно је предвидети уградњу главне и резервне заштите од кварова, као и заштиту од преоптерећења. Неопходне заштитне функције по заштитним уређајима су:

а) за уређај главне заштите:
- дистантна заштита са најмање четири временско-дистантна степена;
- диференцијална заштита хода (обавезно код каблова 110 kV, а код надземних водова у случајевима када прорачуни покажу да се селективност рада заштитних уређаја не може постићи дистантном заштитом);
- аутоматско поновно укључење прекидача;
- детекција прекида проводника;
- заштита од отказа рада прекидача;
- заштита од укључења на квар;
- вишестепена трофазна прекострујна заштита;
- вишестепена земљоспојна заштита;
- усмерена земљоспојна заштита;
- заштита од преоптерећења;
- детекција промене смера струје код заштите далековода који почињу у истом објекту и завршавају се у истом објекту;
- детекција слабог напајања квара;
- детекција осциловања снаге у мрежи;
- надзор секундарних кола, и то надзор секундарних струјних кола и надзор секундарних напонских кола;
- локатор кvara;
- комуникација мeђу заштитним уређajима нa кrajевима далековода кoјa подржавa комуникациjу мeђу дистaнтиним заштитaмa, комуникациjу мeђу усmerеним земљоспоjним заштитaмa и комуникациjу кoд диференциjалне заштите вода;
- заштиту од несиметриjе полова прекидачa;
- контролу искључних кругова прекидачa (као екстeрнi уређaj за сваки искључни калем);

б) за уређaј резервe заштите:
- вишестепена трофaзна прекоструjна заштита вишeстепена земљоспоjна заштита;
- усмeренa земљоспоjна заштита;
- надзор сeкундарних струjних кoла и надзор сeкундарних напонских колa.

У построjењимa сa помочним системом 110 kV сабирилицa мора сe обезбедити пребацивањe деловањa заштитa нa прекидач споjног пољa.

4.2.11.2.4. За заштиту двофазних далековода 110 kV за напаjањe електровучних подстаницa железнице, потребно jе предвидети уградjу главне и резервe заштите од кварова. Неопходне заштитне функциje по заштитним уређaјимa су:

a) за уређaј главне заштите:
- вишестепена прекоструjна заштита;
- вишестепена земљоспоjна заштита;
- аутоматски DOWN укиjењe прекидача;
- заштита од преоптерећењa;
- заштита од отказa прекидачa;
- заштита од несиметриjе полова прекидачa (уколикo нијe реализована унутрашњом шемом прекидачa);
- контрола искључних кругова прекидачa (као екстeрнi уређaj за сваки искључни калем);

б) за уређaј резервe заштите:
- вишестепена прекоструjна заштита;
- вишестепена земљоспоjна заштита.

4.2.11.2.5. Уколикo објекат корисника преносног система садржи 110 kV построjењe за утискивањe мрежно-тонске командe, користи сe стандaрднo опремљено пољe сa тpи струjne трансформаторa и барем једним напонским трансформатором коjим се контролише нивo сигнала. Оваквo построjењe потребнo jе opremити трофaзном вишeстепеном прекоструjном и земљоспоjном заштитом.

4.2.11.2.6. Кондензаторске бaтериjе u спoјнoм филтepу сe штите заштитом oд струjнe несиметриjе тренутног деjства, koja сe прикључуje нa струjни трансформатор између неутралних тачакa два групе кондензаторских батериjа везаних у звездu. Уколикo постоjе спрежни индуктивни елементи сa уљном изолациjом, потребнo jе применити и заштиту гасним релеjом.

4.2.11.2.7. За заштиту 110 kV сабирилицa у објектимa корисника преносног система у конвенционалним построjењимa и GIS построjењимa код кoјих tо произвођaч не захтева, нiјe обавеpna утисpaњa лоkalне заштите сабирилицa, вeћ сe квaрови нa нjимa елиминишу искључењем напоjних 110 kV водова у суседним построjењимa (удaљена заштита).

4.2.11.2.8. У 110 kV GIS построjењимa корисника преносног система код кoјих тo произвођaч захтeва, користи сe лoкална диференциjална заштита сабирилицa.

36
4.2.11.2.9. У постројењима 110 кВ у којима се угражује диференцијална заштита сабирница, користи се и функција заштите од отказа прекидача.

4.2.11.2.10. У постројењима 110 кВ са више система сабирница у попречном спојном пољу угражује се заштитни уређај са заштитним функцијама прекострујне земљопојне заштите и заштите од отказа рада прекидача.

4.2.11.2.11. Резервне заштитне функције се остварују локално и реализују у физичком независном заштитном уређају.

4.2.11.2.12. На кориснику преносног система је одговорност да угради додатну заштитну опрему у свој објекат у циљу заштите технолошког процеса за случај појаве поремећаја у преносној мрежи. Ова опрема не sme бити активирана од прелазних процеса.

4.2.11.3. Избор врста заштита за мрежу 220 kV и 400 kV

4.2.11.3.1. ЕМС АД ће у случају прикључења, односи повезивања на мрежу 220 kV и 400 kV, дефинисати техничке услове који се односе на заштиту сагласно специфичностима сваког појединачног захтева за прикључење.

4.2.11.4. Подешења заштита

4.2.11.4.1. Корисници преносног система су дужни да затраже од ЕМС АД план подешења заштита за елементе ЕЕС у свом објекту који задовољавају критеријуме прве, друге и треће групе Категоризације најмање 20 дана пре пуштавања објекта (или дела објекта) у погон. ЕМС АД доставља овај план кориснику преносног система у року од 10 дана од пријема захтева од овог корисника.

4.2.11.4.2. Корисници преносног система су дужни да доставе ЕМС АД на сагласност план подешења заштита за елементе ЕЕС у свом објекту који задовољавају критеријуме четврте групе Категоризације, а који су директни галвански у вези са елементима који задовољавају критеријуме прве, друге или треће групе Категоризације најмање 15 дана пре пуштавања објекта (или дела објекта) у погон. ЕМС АД у року од 7 дана од пријема плана подешења заштита издаје кориснику преносног система сагласност, или дефинише кориснику измене у плану подешења заштита како би се постигла селективност и захтевана времена исклучења свих врста кварова.

4.2.11.4.3. План подешења заштитних уређаја се израђује имајући у виду само испад једног елемента преносног система (N-1 критеријум).

4.2.11.4.4. Корисник преносног система је дужан да примени параметре из плана подешења заштите у своје заштитне уређаје и да о томе одмах извести ЕМС АД.

4.2.11.4.5. ЕМС АД координира заштитне системе са суседним операторима преносног система са посебним освртом на одређивање типа и подешења заштита на интерконективним далеководима.

4.2.11.5. Зоне деловања заштита

4.2.11.5.1. Системи за заштиту делују по зонама, како би се искључио ограничен део преносног система који је погођен кваром. Обавезно се спроводи принцип прекида врста деловања заштите, због поузданости рада заштите и како би сваки део преносног система имао своју резервну заштиту.

4.2.11.5.2. Зоне деловања заштита морају бити одговарајуће за:
- топологију и услове погона објекта корисника преносног система;
- техничке услове у месту прикључења, односно повезивања;
- уклону стања за испад једног елемента преносног система.
4.2.11.6. Времена искућења кварова

4.2.11.6.1. Времена искућења кварова у мрежи 400 kV, 220 kV, 110 kV одређује ЕМС АД. Да би се селективно искућио само елемент преносног система који је погођен кваром, деловање заштите се временски степенује.

4.2.11.6.2. Времена искућења електрично блиских кварова (изузев оних код којих постоји висок удео прелазног отпора квара) на далеководима, који се искућују у првом степену деловања заштите, максимално износе:
- 100 ms у 400 kV преносној мрежи;
- 100 ms у 220 kV преносној мрежи;
- 150 ms у 110 kV преносној мрежи.

4.2.11.6.3. Електрично удаљени кварови на далеководима, као и кварови на суседним сабирницама, искућују се по правилу у другом степени дистантне заштите, а времена искућења максимално износе:
- 350ms у 400 kV преносној мрежи, уколико се не користи систем за једновремено искућење заштите, односно 100 ms уколико се користи овај систем;
- 500 ms у 220 kV преносној мрежи уколико се не користи систем за једновремено искућење заштите, односно 100 ms уколико се користи овај систем;
- 500 ms у 110 kV преносној мрежи уколико се не користи систем за једновремено искућење заштите, односно 150 ms уколико се користи овај систем.

4.2.11.6.4. Кварови на енергетским трансформаторима се искућују максимално за 100 ms од електричне заштите од унутрашњих кварова (диференцијална заштита и ограничена земљоспојна заштита, односно алтернативна „кућишна“ заштита).

4.2.11.6.5. Кварови на сабирницама се искућују максимално за:
- 100 ms уколико је активна диференцијална заштита сабирница (локална заштита);
- време једнако времену искућења у другом степени дистантне заштите далековода, јер се кварови на њима елиминишу искућењем напојних водова у суседним постројењима (удаљена заштита), односно време једнако времену искућења вишестепене двосмерне дистантне заштите трансформатора чија је нисконапонска страна галвански прикључена на ове сабирнице.

4.2.11.7. Аутоматско поновно укључење

4.2.11.7.1. На надземним водовима у преносној мрежи примењују се функције за аутоматско поновно укључење (АПУ) које имају следеће циклусе рада:
- једнофазно АПУ у 400 kV, 220 kV и 110 kV преносној мрежи са безнапонском паузом која износи 1 s;
- трофазно АПУ у 220 kV и 110 kV преносној мрежи, а само у изузетним случајевима у 400 kV преносној мрежи, са безнапонском паузом која износи 1 s.

4.2.11.7.2. Трофазно АПУ у 400 kV преносној мрежи, а по потреби и трофазно АПУ у 220 kV преносној мрежи примењује се уз проверу услова за синхронизацију. У 110 kV преносној мрежи, трофазно АПУ по правилу ради без провере услова за синхронизацију, а примењује се само уколико у близини има генератора.
4.3. ДОДАТНИ ТЕХНИЧКИ УСЛОВИ ЗА ГЕНЕРАТОРСКЕ ЈЕДИНИЦЕ

4.3.1. Увод

4.3.1.1. Додатни технички услови за прикључење генераторских јединица прописују се због њихових специфичних перформанси и улоги у односу на остали објекте у преносном систему, посебно са становишта могућности обезбеђивања системских услуга и успостављања преносног система након распада.

4.3.2. ВЕЗА СА ПРЕНОСНОМ МРЕЖОМ

4.3.2.1. ЕМС АД у својим објектима из којих полазе водови ка производном објекту поставља приказ шеме напајања који обухвата високонапонска поља у овим објектима (блок-трансформатора, трансформатора сопствене потрошње и остала релевантне елементе), а који су од интереса за рад преносне мреже.

4.3.2.2. Уколико је обезбеђен правца за напајање опште потрошње електране из преносне мреже, он се не може користити као альтернативна веза за испоруку произведене електричне енергије.

4.3.3. СИНХРОНИЗАЦИЈА НА ПРЕНОСНУ МРЕЖУ

4.3.3.1. Уређаји за синхронизацију генератора на преносну мрежу морају бити обезбеђени за следеће услове погона:
 - покретање генераторске јединице у нормалном раду;
 - синхронизацију након испада генератора са преносне мреже на сопствену потрошњу уважавајући концепт сопствене потрошње;
 - везивање на систем сабирница без напона у циљу стављања тих сабирница под напон (само за хидроелектране).

4.3.3.2. Синхронизација генераторске јединице мора се обезбедити за сваку фреквенцију у преносној мрежи из опсега 49 - 51 Hz и за сваки напон у преносној мрежи из нормалног радног опсега.

4.3.3.3. Генераторска јединица мора бити у могућности да изврши синхронизацију ако су испуњени следећи услови:
 - разлика фреквенција Δf је мања од 0,1 Hz;
 - напонска разлика ΔU је мања од 10% називног напона;
 - угаона разлика Δφ је мања од 10°.

4.3.4. РАЗМЕНА ПОДАТАКА У РЕАЛНОМ ВРЕМЕНУ

4.3.4.1. Производне јединице морају бити освођене за размену података у реалном времену.

4.3.4.2. Производна јединица мора бити опремљена да доставља следеће податке у реалном времену техничком систему управљања ЕМС АД:
 - уклонно стање расклопне опреме у електрани на напонским нивоима од интереса за управљање преносном мрежом;
 - напоне на примарној и секундарној страни блок-трансформатора;
 - активну и реактивну снагу генераторске јединице (на самом генератору и на високонапонској страни блок-трансформатора).

4.3.4.3. Уколико генераторска јединица има могућност рада у примарној регулацији, она мора бити опремљена да техничком систему ЕМС АД доставља сигнал статуса.
учествовања у раду примарне регулације (укључен, искључен), односно да од ЕМС АД прима командни сигнал за укључење, односно искључење примарне регулације.

4.3.4. Уколико генераторска јединица има могућност рада у секундарној регулацији, она мора бити опремљена да техничком систему ЕМС АД доставља следеће допунске податке:

- максималну и минималну снагу регулационог опсега агрегата када он ради у секундарној регулацији;
- износ промене снаге по импулсу секундарне регулације;
- базну снагу генератора;
- статус учествовања генераторске јединице у раду секундарне регулације (укључен, искључен);
- податке неопходне за обрачун учешћа генератора у раду секундарне регулације.

4.3.4.5. Генераторска јединица која има могућност рада у секундарној регулацији, мора бити опремљена да од ЕМС АД прима следеће податке у реалном времену:

- референтне вредности за регулацију (укључење и искључење секундарне регулације), тренутни захтев снаге секундарне регулације (у облику референтног нивоа или регулационог импулса);
- укључење генератора у секундарну регулацију (укључен, искључен);
- тренутне вредности напона, фреквенције, токова активних и реактивних снага у преносном објекту на који је прикључена генераторска јединица.

4.3.4.6. Ветроелектрана мора ЕМС АД да доставља следеће допунске податке у реалном времену:

- број ветрогенератора који су погону;
- број ветрогенератора који је нису у погону и узрок (велика/мала брзина ветра, квар, ремонт, остало).

4.3.4.7. Ветроелектрана мора бити опремљена да техничком систему ЕМС АД доставља следеће метеоролошке податке у реалном времену:

- брзину ветра на висини на којој су инсталирани ветрогенератори, за опсег 0-50 m/s;
- температур слова, за опсег од -40 до 60ºС;
- атмосферски притисак, за опсег 735-1060 mbar.

4.3.5. ПРЕДАЈА АКТИВНЕ СНАГЕ У ПРЕНОСНУ МРЕЖУ

4.3.5.1. Приликом отступања напона и фреквенције у преносној мрежи у стационарним стањима, генераторска јединица, мора бити способна да генерише активну снагу P која задовољава вредности из табеле 4.2. уколико је прикључена на мрежу 110 кV и 220 kV, односно из табеле 4.3. уколико је прикључена на мрежу 400 kV (за време уређено одељком 4.3.8.):

<table>
<thead>
<tr>
<th>U</th>
<th>f</th>
<th>47,5 – 48,5 Hz</th>
<th>48,5 – 49,5 Hz</th>
<th>49,5 – 51,5 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,9U_{nom} - 1,15U_{nom}</td>
<td>P > 0,95P_{nom}</td>
<td>P > 0,975P_{nom}</td>
<td>P = P_{nom}</td>
<td></td>
</tr>
<tr>
<td>0,85U_{nom} - 0,9U_{nom}</td>
<td>P > 0,875P_{nom}</td>
<td>P > 0,875P_{nom}</td>
<td>P > 0,875P_{nom}</td>
<td></td>
</tr>
</tbody>
</table>
Табела 4.3.

<table>
<thead>
<tr>
<th>U</th>
<th>f</th>
<th>47,5 – 48,5 Hz</th>
<th>48,5 – 49,5 Hz</th>
<th>49,5 – 51,5 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95U_{ном} - 1,1U_{ном}</td>
<td>P > 0.95P_{ном}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9U_{ном} - 0.95U_{ном}</td>
<td>P > 0.875P_{ном}</td>
<td>P > 0.975P_{ном}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P = P_{ном}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P > 0.875P_{ном}</td>
<td>P > 0.975P_{ном}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

где су:
U – радион напон у месту прикључења;
f – радна фреквенција у преносној мрежи;
P_{ном} – називна активна снага генератора;
U_{ном} – називни напон преносне мреже на коју је прикључен објекат;
Наведено смањење предате активне снаге се не односи на утицај дејства примарне или сеансарне регулације.

4.3.5.2. Блок-трансформатор не сме бити ограничавајући фактор за предају активне снаге од стране генераторске јединице у преносну мрежу.

4.3.5.3. Промена оптерећења сваке генераторске јединице у износу од бар:
- 4%P_{ном} у минуту за турбогенераторске јединице;
- 30%P_{ном} у минуту за хидрогенераторске јединице;
мора бити омогућена кроз цео спектар између техничког минимума и називне снаге, као и стабилна излазна вредност активне снаге током ових промена.

4.3.5.4. Ветролектрана мора имати могућност снижења активне снаге у износу од најмање 25% укупне инсталисане снаге у минуту.

4.3.6. РЕГУЛАЦИЈА ФРЕКВЕНЦИЈЕ И СНАГЕ РАЗМЕНЕ

4.3.6.1. Примарна регулација

4.3.6.1.1. Свака генераторска јединица чија је називна активна снага већа или једнака 50 MW, изузев оних које имају могућност комбиноване производње топлотне и електричне енергије, мора бити оспособљена за извођење примарне регулације.

4.3.6.1.2. Свака генераторска јединица чија је номинална активна снага мања од 50 MW може бити оспособљена за извођење примарне регулације у складу са постигнутим договором са ЕМС АД.

4.3.6.1.3. Следећи услови примењују се на све генераторске јединице које учествују у примарној регулацији:
- опсег примарне регулације мора износити бар ± 2%P_{ном};
- карактеристика активна снага - фреквенција уређаја за примарну регулацију мора бити подесива и то у опсегу 4-6%;
- за остале величине усвајају се следеће вредности:
 a. време активирања примарне регулације: до 2 секунде након поремећаја за почетак активирања примарне регулације, највише 15 секунди након поремећаја за активирање резерве примарне регулације која захтева ангажовање снаге 50% од пуног опсега примарне регулације или мање од тога, а за поремећаје које захтевају ангажовање примарне регулације у опсегу од 50% до 100% пуног опсега примарне регулације, временски лимит за реаговање примарне регулације се одређује линеарно од 15 с до 30 с;
 b. оперативна искривљеност: примарна резерва мора бити у потпуности активирана за одступање фреквенције квазистационарног стања од ± 200 мHz;
 v. трајање испоруке примарне резерве је минимално 15 минута;

41
4.3.6. Секундарна регулација

4.3.6.2.1. Све хидрогенераторске јединице чија је $P_{nom} \geq 50$ MW морају имати могућност рада у секундарној регулацији, при чему се мора обезбедити регулациони опсег у износу од најмање $0,3P_{nom}$.

4.3.6.2.2. Све турбогенераторске јединице чија је $P_{nom} \geq 150$ MW, изузев оних које имају могућност комбиноване производње топлотне и електричне енергије, морају имати могућност рада у секундарној регулацији, при чему се мора обезбедити регулациони опсег у следећем износу:

- за турбогенераторе где је погонско гориво угаљ: регулациони опсег је већи од $0,15P_{nom}$;
- за турбогенераторе где је погонско гориво гас или мазут: регулациони опсег је већи од $0,25P_{nom}$.

4.3.6.3. Терцијарна регулација

4.3.6.3.1. Сви хидрогенератори морају имати временски синхронизације на преносну мрежу мање од 15 минута.

4.3.6.3.2. Сви мотори у пумпним постројењима, односно хидрогенератори са могућношћу реверзибилног рада, морају имати временски синхронизације на преносну мрежу мање од 15 минута (у оба режима рада).

4.3.6.3.3. Сваки генератор мора имати способност рада са сниженом производњом активне енергије. Минимални износ ове производње за који се гарантује стабилан рад генератора, тзв. технички минимум мора задовољити следеће вредности:

- за хидрогенераторе: $P_{min} \leq 0,45P_{nom}$;
- за турбогенераторе где је погонско гориво угаљ: $P_{min} \leq 0,7P_{nom}$;
- за турбогенераторе где је погонско гориво гас или мазут: $P_{min} \leq 0,4P_{nom}$;
- за турбогенераторе са комбинованим циклусом: за гасну турбину $P_{min} \leq 0,4P_{nom}$, а за парну турбину $P_{min} \leq 0,8P_{nom}$;
- за осталих врсте генератора: $P_{min} \leq 0,8P_{nom}$.

4.3.7. Регулација напона

4.3.7.1. Генераторска јединица, изузев ветрогенераторске, мора бити оспособљена да врши регулацију напона унутар означене области на слици 4.3 и то трајно за нормалне опсеге напона у преносној мрежи, односно привремено када су напони ван ових опсега у складу са тачком 4.3.8.2.1. а без обзира на њено учешће у примарној или секундарној регулацији, при чему је:

- U_{nom} – називни напон преносне мреже на коју је прикључен објекат;
- U_{m} – напон у преносној мрежи на месту прикључења;
- $\cos \varphi$ – фактор снаге на месту прикључења.
4.3.7.2. Ветрогенераторска јединица мора бити оспособљена да врши регулатију напона унутар означене области на слици 4.3, али само за опсег:

\[0,95 \text{ капацитивно } \leq \cos \phi \leq 0,95 \text{ индуктивно.} \]

4.3.7.3. Коафицијент статизма регулатије напона на сабирницама преносне мреже на коју је прикључена електрана \((\Delta U_m/\Delta Q_{el})\) мора бити подесив у опсегу од -1.5% до -6%.

4.3.7.4. У случају пропада напона испод опсега нормалних радних напона, генераторска јединица мора имати могућност повећања побудне струје у износу од најмање 2% за сваки проценат смањења напона изван нормалног радног опсега, а до износа од 160%. Повећање побудне струје мора почети најкасније 20 ms након пропада напона и трајати бар 500 ms након повратка напона у нормални радни опсег, али најдуже 10 s од почетка пропада напона.

Слика 4.3

4.3.8. Искључење генераторске јединице са преносне мреже

4.3.8.1. Искључење генератора због одступања фреквенције

4.3.8.1.1. У складу са износом одступања фреквенције \(f\), генераторска јединица мора бити оспособљена да остане у погону повезана са преносном мрежом за различит период времена, и то:

- за интервал 47,5 Hz \(\leq f \leq 48,5 \text{ Hz} \), најмање 30 минута;
- за интервал 48,5 Hz \(\leq f \leq 49,0 \text{ Hz} \), најмање 90 минута;
- за интервал 49,0 Hz \(\leq f \leq 51 \text{ Hz} \), трајно;
- за интервал 51 Hz \(\leq f \leq 51,5 \text{ Hz} \), најмање 30 минута.

4.3.8.1.2. Реверзибилна хидрогенераторска јединица, односно пумпна јединица чија је називна снага већа од 100 MW мора имати могућност тренутног искључења са преносне мреже у пумпном режиму рада за опсег фреквенције 49 Hz – 49,8 Hz.

4.3.8.1.3. Генераторска јединица мора бити оспособљена да остане у погону повезана са преносном мрежом за промене фреквенције у износу од највише \(\pm 2 \text{ Hz/s} \). За промене фреквенције веће од \(\pm 2 \text{ Hz/s} \) дозвољава се испад генераторске јединице са мреже након 1,25 s.

4.3.8.2. Искључење генератора као последица одступања напона

4.3.8.2.1. У складу са износом одступања напона у тачки прикључења на преносну мрежу \(U_m \), генераторска јединица мора бити оспособљена да остане у погону повезана са преносном мрежом за различит период времена, и то:
а) за места прикључења на 400 kV:
- за интервал 90% \(U_{nom} < U_m \leq 95% \) \(U_{nom} \) најмање 60 минута;
- за интервал 95% \(U_{nom} < U_m \leq 105% \) \(U_{nom} \) трајно;
- за интервал 105% \(U_{nom} < U_m \leq 110% \) \(U_{nom} \) најмање 60 минута;

б) за места прикључења на 110 kV и 220 kV:
- за интервал 85% \(U_{nom} < U_m \leq 90% \) \(U_{nom} \) најмање 600 минута;
- за интервал 90% \(U_{nom} < U_m \leq 110% \) \(U_{nom} \) најмање 60 минута.

4.3.8.2.2. При квазистационарном стању, када је напон у месту прикључења изван вредности наведених у тачки 4.3.8.2.1, генераторска јединица се може искључити са мреже дејством автоматских уређаја.

4.3.9. ПОНАШАЊЕ ГЕНЕРАТОРСКЕ ЈЕДИНИЦЕ У СЛУЧАЈУ ПОРЕМЕЋАЈА

4.3.9.1. Стабилност угла ротора при појави кратких спојева у преносној мрежи

4.3.9.1.1. Защита у преносној мрежи мора да обезбеди да се електрично блиски кварови искључе за највише 150 ms, како генераторска јединица не би испала са мреже у случају нестабилности (подразумева се да је генератор пре појаве кратког споја унутар граница дозвољеног погонског дијаграма) за случај да снага кратког споја на високонапонској страни блока трансформатора пређе износ од најмање 6 називних снага генератора. Такође се подразумева да у описаном случају не долази ни до преусмеравања сопствене потрошње генератора.

4.3.9.2. Стабилност угла ротора у случају малих поремећаја

4.3.9.2.1. Појава осцилација у активним снагама у преносној мрежи не мора да доведе до искључења генератора са мреже. Стабилност угла ротора у случају малог поремећаја од појаве осцилације у активним снагама мора да се дуготрајно постигне.

4.3.9.2.2. Турбинско-генераторски уређај за секундарну регулацију мора да одбуде искључење у случају осцилације у активним снагама у преносној мрежи.

4.3.9.3. Испад генератора на сопствену потрошњу

4.3.9.3.1. Турбогенераторска јединица која је експонована снага већ од 100 MW мора бити способна да у случају одступања фrekвенције, односно напона, и под условима дефинисаним у одељку 4.3.8. Правила:
- да се у року од 15 минута након испада усклопити са вредностима наведеним одступањем напона или френквенције поново веже на мрежу.

4.3.9.3.2. Способност преласка генераторске јединице на напајање сопствене потрошње гарантује се и за случај поремећаја у преносном систему, а у складу са шемом деловања заштите.

4.3.9.3.3. Након што дође до преласка на напајање сопствене потрошње металне генераторске јединица мора бити способна да ради у том режиму бар 60 минута.

4.3.9.3.4. Хидрогенераторска јединица, без обзира на инсталисану снагу, испуњава услове који се тачкама 4.3.9.3.1.- 4.3.9.3.3. прописани за турбогенераторске јединице.

4.3.9.4. Способност безнапонског покретања генератора

4.3.9.4.1. Способност безнапонског покретања генератора у хидрогенераторским јединицама мора се обезбедити на захтев ЕМС АД за потребе успостављања преносног система након делимичног или потпуног распада.
4.3.9.4.2. Рад генераторске јединице у овом режиму рада мора се гарантовати у времену од најмање 15 минута.

4.3.9.5. Способност острвског рада генератора

4.3.9.5.1. Способност острвског рада генератора у хидроелектранама мора се обезбедити на захтев ЕМС АД за потребе успостављања преносног система након делимичног или потпуног распада.

4.3.9.5.2. Хидроелектрана декларисана за острвски рад мора имати способност да се синхронизује на острво чија је снага већа од снаге сопствене потрошње његове генераторске јединице, а мања од називне снаге ове генераторске јединице. Острвски рад мора се гарантовати у трајању од најмање 6 сати.

4.3.9.5.3. Уколико хидроелектрана ради у острвском раду, мора се имати способност тренутне промене производње до износа од 10% називне снаге генератора који су у том тренутку у погону.

4.3.10. СТАБИЛИНОСТ

4.3.10.1. Турбогенераторска јединица називне снаге веће од 200 MW, односно хидрогенераторска јединица називне снаге веће од 100 MW мора бити опремљена уређајем за стабилизацију ЕЕС.

4.3.10.2. ЕМС АД одређује подешења уређаја за стабилизацију ЕЕС, водећи рачуна о следећем:
- да уређај не реагује на неосцилаторне промене;
- да излазни сигнал из уређаја за стабилизацију ЕЕС не пређе опсег од ±10% улазног сигнала напонског регулатора;
- да се не изазову торзионе осцилације на другим генераторским јединицама.
ПОГЛАВЉЕ 5: ПРИСТУП ПРЕНОСНОМ СИСТЕМУ

5.1. УВОД

5.1.1. Приступ, односно коришћење преносног система, обухвата:
- приступ прекограничним преносним капацитетима;
- приступ преко објеката који су прикључени на преносни систем, односно повезани са преносним системом.

5.1.2. Приступ прекограничним преносним капацитетима реализује се кроз следеће поступке:
- одређивање прекограничног преносног капацитета у сарадњи са суседним операторима преносног система;
- додељивање права на коришћење прекограничног преносног капацитета учесницима на тржишту електричне енергије, на начин који се уређује правилима за расподелу права на коришћење прекограничних преносних капацитета;
- омогућавање учесницима на тржишту електричне енергије да реализују додељено право на коришћење прекограничног преносног капацитета.

5.1.3. Услови за одбијање приступа прекограничним преносним капацитетима уређују се прописима који регулишу област енергетике, правилима за расподелу права на коришћење прекограничних преносних капацитета и Правилима у делу који се односи на рад преносног система.

5.1.4. Корисници преносног система преко објеката прикључених на преносни систем, односно повезаних са преносним системом, имају непрекидно право приступа преносном систему под условима уређеним одобрењем за прикључење, односно уговором о повезивању и прописима који уређују област енергетике.

5.1.5. Одбијање приступа преносном систему корисницима преносног система преко објеката који су прикључени на преносни систем, односно повезани са преносним системом, спроводи се на начин одређен прописима који уређују област енергетике.

5.2. ПРИСТУП ПРЕКОГРАНИЧНИМ ПРЕНОСНИМ КАПАЦИТЕТИМА

5.2.1. ОДРЕЂИВАЊЕ ПРЕКОГРАНИЧНОГ ПРЕНОСНОГ КАПАЦИТЕТА

5.2.1.1. ЕМС АД одређује уз хармонизацију са суседним операторима преносног система:
- нето преносни капацитет;
- маргину поузданости преноса;
за сваку границу у оба смера на годишњем, месечном, седмичном и дневном нивоу.

5.2.1.2. Приликом одређивања нето преносног капацитета и маргине поузданог преноса уважавају се предвиђена погонска стања у преносним системима у региону за одговарајући временски период, технички критеријуми из одељка 3.2. Правила и одговарајући поступци уређени правилима о раду интерконекције.

5.2.1.3. ЕМС АД обавештава балансно одговорне стране о неопходним подацима и формату података, у складу са правилима о раду интерконекције, за прорачун
прекограничних преносних капацитета за месец М, до првог дана у месецу М-2. Балансио одговорне стране достављају наведене податке ЕМС АД у року од 15 дана.

5.2.2. РЕАЛИЗАЦИЈА ДОДЕЉЕНОГ ПРАВА НА ПРЕКОГРАНИЧНИ ПРЕНОСНИ КАПАЦИТЕТ

5.2.2.1. Након што ЕМС АД изврши дodelu права на коришћење прекограничног преносног капацитета учесницима на тржишту електричне енергије, ови учесници стичу право да у оквиру израде Дневног плана рада преносног система, односно унутардневне измене овог плана, пријаве прекограничне размене електричне енергије у оквиру дodelеног права.

5.2.2.2. Сви поступци који се односе на прекограничну размену електричне енергије уређени су овим Правилима у делу који се односи на рад преносног система.

5.3. ПРИСТУП ПРЕКО ОБЈЕКАТА

5.3.1. Увод

5.3.1.1. Како би се уредили услови приступа преносном систему корисника преносног система преко објеката прикључених на преносни систем, односно повезаних са преносним системом, неопходно је одредити:

- мере квалитета испоруке и испоручене електричне енергије;
- начин утврђивања чињеница о поремећеном приступу.

5.3.1.2. ЕМС АД има обавезу да прати услове приступа преносном систему преко објеката. У случају када се утврди да су прекорачене вредности из тачака 5.3.2.2.1., 5.3.2.3.1. и 5.3.2.4.1, ЕМС АД сагледава узроке поремећеног приступа и одлучује о мерама које је потребно предузети, како би се квалитет испоруке и испоручене електричне енергије усагласио са наведеним вредностима. Ове мере обухватају уређивање услова експлоатације преносних и објеката корисника преносног система, односно развој преносног система.

5.3.2. ПАРАМЕТРИ И НАЧИН КОНТРОЛЕ КВАЛИТЕТА ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ

5.3.2.1. Увод

5.3.2.1.1. Квалитет испоруке електричне енергије оцењује се на основу прекида испоруке електричне енергије.

5.3.2.1.2. Квалитет испоручене електричне енергије оцењује се на основу:

- квалитета напона;
- квалитета фреквенције.

5.3.2.2. Квалитет напона

5.3.2.2.1. Квалитет напона у месту прикључења, односно повезивања, мора бити у складу са стандартом СРПС ЕН 50160 (за највиши напонски ниво уређен овим стандартом), а у следећим аспектима:

- ефективна вредност
- тренутна вредност;
- несиметрија;
- виши хармоници;
- фликери.
5.3.2.3. Квалитет фреквенције
5.3.2.3.1. Квалитет фреквенције у месту прикључења, односно повезивања, мора бити у складу са стандардом СРПС ЕН 50160.
5.3.2.4. Квалитет испоруке електричне енергије
5.3.2.4.1. У месту прикључења, односно повезивања електричне енергије због узрока унутар преносног система, у укупном трајању током једне календарске године које износи:
 - 2 сата за места прикључења производних јединица;
 - 4 сата за остала места прикључења или повезивања на напонским нивоима 400 kV, 220 kV и 110 kV;
 - 6 сати за остала места прикључења или повезивања на напонским нивоима нижим од 110 kV.
У наведена времена не рачунају се планирани радови у преносном систему.
5.3.2.5. Мерење квалитета испоручене електричне енергије
5.3.2.5.1. Мерење квалитета испоручене електричне енергије у местима прикључења и повезивања обавља се у складу са стандардом СРПС ЕН 61000-4-30 мерењем међуфазних напона, односно линијских струја.
5.3.3. УТВРЂИВАЊЕ ЧИЊЕНИЦА О ПОРЕМЕЂЕНОМ ПРИСТУПУ
5.3.3.1. За почетак поремећеног приступа у случајевима одступања ефективне вредности напона сматра се тренутак у коме је центар управљања корисника преносног система обавестио (усмено или писмено) одговарајући центар управљања ЕМС АД.
5.3.3.2. Подаци који се уважавају приликом утврђивања чињеница о поремећеном приступу корисника преносног система преко објеката су:
 - подаци са објеката (подаци о деловањима заштита, хронолошки регистратор догађаја, дневник рада, звучни записи о конверзацији са центрима управљања и други подаци);
 - подаци из центара управљања (подаци са SCADA система, дневници рада, звучни записи о конверзацији са центрима управљања и објектима и други подаци).
5.3.3.3. Подаци наведени у овом одељку се у смислу веродостојности рангирају према следећем редоследу:
 1. подаци који се у реалном времену размењују између ЕМС АД и корисника преносног система чији је објекат претрпео поремећен приступ, односно остали подаци којима ЕМС АД и корисник преносног система приступају равноправно;
 2. подаци са SCADA система, објеката и центара управљања ЕМС АД;
 3. подаци са објеката и центара управљања корисника преносног система чији је објекат претрпео поремећен приступ;
 4. подаци са објеката и центара управљања других корисника преносног система.
5.3.3.4. ЕМС АД, односно корисник преносног система, могу захтевати званичним дописом у року од 15 радних дана након поремећеног приступа доставу података из одељка 5.3.3. од друге стране. Рок за доставу наведених података износи 15 дана.
5.4. ИНСТРУМЕНТ ОБЕЗБЕЂЕЊА ПЛАЋАЊА ПРИСТУПА ПРЕНОСНОМ СИСТЕМУ

5.4.1. Вредност ризика за случај неизвршења обавеза за услугу приступа систему за пренос електричне енергије на нивоу обрачунског периода одређuje оператор преносног система за корисника преносног система са којим закључује уговор о приступу систему за сва места примопредаје за које је надлежан на основу следеће формуле:

\[VR = K_p \cdot K_k \cdot K_c \cdot VT_{ae} \]

где су:
- \(VR \) — вредност ризика по уговору о приступу систему између оператора преносног система и корисника преносног система (у динарима);
- \(K_p \) — период за који се тражи инструмент обезбеђења плаћања (у месецима);
- \(K_k \) — максимална месечна количина електричне енергије предате кориснику преносног система у претходној години на свим постојећим местима примопредаје, увећана за уговорене месечне количине електричне енергије које ће се предати кориснику преносног система на новоприкљученим местима примопредаје, за тог корисника преносног система (у kWh);
- \(K_c \) — вредност коефицијент а који изражава учешће трошак по основу активне енергије (виша тарифа) у односу на укупни трошак предате електричне енергије у претходној години на свим постојећим местима примопредаје, за тог корисника преносног система (у %);
- \(VT_{ae} \) — виша тарифа за активну енергију израчуната у складу са методологијом за одређивање цене приступа систему за пренос електричне енергије (у din/kWh).

5.4.2. Корисник преносног система није у обавези да обезбеди инструмент обезбеђења плаћања по основу услуге приступа систему за места примопредаје за које је обезбеђен прихватљив инструмент обезбеђења плаћања за случај неизвршења обавеза по питању одступања балансне групе у складу са правилима којима је уређен рад тржишта електричне енергије. Ослобађање од обавезе обезбеђивања инструмента обезбеђења плаћања по основу услуге приступа систему се регулише уговором о приступу систему.

5.4.3. Уколико за новог корисника преносног система није могуће утврдити вредности енергетских величина (\(K_k \) и \(K_c \)) вредност ризика због неизвршења обавеза за услугу приступа систему одређuje оператор преносног система тако што вредност \(K_k \) одређuje на основу планираних максималних месечних количина, а вредност \(K_c \) на основу вредности \(K_c \) за све кориснике преносног система у претходној години.

5.4.4. По истеку тромесечја, оператор преносног система може утврдити нову вредност ризика за све нове кориснике преносног система на основу остварених енергетских месечних количина предате електричне енергије, узимајући у обзир тај тромесечни период.

5.4.5. Вредност ризика не може бити мања од 50.000,00 EUR, нити већа од 1.000.000,00 EUR. На основу утврђене вредности ризика одређuje се износ (вредност) одговарајућег инструмента обезбеђења плаћања.

5.4.6. Наплата потраживања, у случају неизвршења обавезе за услугу приступа систему, се обезбеђује одговарајућим и прихватљивим инструментом обезбеђења плаћања који доставља корисник преносног система у корист оператора преносног система едгасно
уговору о приступу систему. Прихватљив инструменти обезбеђења плаћања су банкарска гаранција или наменски (гарантни) депозит.

5.4.7. Банкарску гаранцију као инструмент обезбеђења плаћања издaje пословна банка у корист оператора преносног система. Банкарска гаранција се издaje на утврђену вредност ризика за сваког корисника преносног система који је изабрао овај инструмент обезбеђења и важи најдуже за период од једне календарске године уз обавезу корисника преносног система да исту продужи или достави нову банкарску гаранцију све док траје примена уговора о приступу систему.

5.4.8. Банкарска гаранција се издaje са валутном клавулуом, тј. вредност банкарске гаранције се изрази у EUR, а наплата се врши у RSD уз примену званичног средњег курса НБС на дан наплате по овој банкарској гаранцији.

5.4.9. Банкарска гаранција мора да буде револвинг, неопозива, безусловна, платива на први позив и без права на приговор са важносцу од 60 дана дуже од важности уговора о приступу систему. Револвинг банкарска гаранција значи да се износ гаранције може смањити без обзира на било које плаћање које банка (гарант) изврши по захтеву оператора преносног система (корисника) за плаћање по гаранцији. Оваква гаранција може бити протестована најмање једанпут, а највише једном месечно у току периода важења.

5.4.10. Оператор преносног система ће у случају неизвршења обавеза корисника преносног система приступи наплати целокупног неплаћеног износа потраживања путем протеста банкарске гаранције, о чему ће писмено обавестити корисника преносног система најмање 3 радна дана прет теста гаранције.

5.4.11. Три месеца пре датума истека календарске године, оператор преносног система има право да у складу са тачком 5.4.1. утврди нову вредност ризика за случај неизвршења обавеза за услугу приступа систему и у зависности од те вредности затева продужење важности постојеће банкарске гаранције или издавање нове банкарске гаранције.

5.4.12. Корисник преносног система је дужан да достави одговарајућу банкарску гаранцију из уговора о приступу систему 30 дана од дана захтева оператора преносног система за продужење постојеће банкарске гаранције или издавање нове банкарске гаранције.

5.4.13. У случају да изабере наменски (гарантни) депозит као инструмент обезбеђења, корисник преносног система депонује средства на специјалном наменском рачуну код банке у корист оператора преносног система сагласно уговору о приступу систему.

5.4.14. Наменски (гарантни) депозит утврђује се на вредност ризика за период за који се тражи инструмент обезбеђења плаћања за сваког корисника преносног система који је изабрао овај инструмент обезбеђења и биће изказан и одржаван у EUR. Наплата се врши у RSD уз примену званичног средњег курса НБС на дан наплате, у складу са уговором о приступу систему.

5.4.15. Оператор преносног система, корисник преносног система који је изабрао овај инструмент обезбеђења и банка закључију межусобни уговор о отварању и администрирању наменског депозита. У случају неизвршења обавезе за одређени обрачунски период, оператор преносног система има право да на први писмени захтев упућен банци изврши наплату износа који потражује од корисника преносног система.
ПОГЛАВЉЕ 6: РАД ПРЕНОСНОГ СИСТЕМА

6.1. УВОД

6.1.1. Да би се обезбедили предуслови за нормалан рад преносног система у реалном времену, неопходно је планирати развој преносног система и прикључивати, односно повезивати објекте корисника преносног система на начин предвиђен Правилима.

6.1.2. У овом поглављу Правила уређују се правила којима се обезбеђују услови за нормалан рад, односно сигуран рад овог система у реалном времену, а она се односе на:
- обезбеђивање системских услуга;
- израду Планова одбране преносног система;
- планирање рада преносног система;
- управљање преносним системом у реалном времену;
- рад система заштите;
- рад комуникационог система;
- извештавање о раду преносног система.

6.1.3. Набавком системских услуга у предвиђеном износу ЕМС АД обезбеђује механизме за планирање рада и управљање преносним системом.

6.1.4. Планови одбране преносног система су основа за поступање у најтежим поремећајима и приликом успостављања система након делимичног или потпуног распада.

6.1.5. Планирањем рада преносног система усаглашавају се потребе за производњом, потрошњом и разменом електричне енергије, као и извођење радова на елементима преносног система са критеријумима нормалног рада.

6.1.6. Преносним системом се у реалном времену мора управљати тако да се, колико је год могуће, рад овог система одвија у планираним режимима рада, са тим да се учићенима на тржишту електричне енергије остави прихватљив степен слободе за измену првобитних планова производње, потрошње и размене електричне енергије.

6.1.7. Управљање подразумева и посебну пажњу да се рад преносног система одвија у нормалним условима, а у случају појаве поремећаја предузимање свих располажућих мера које ће довести до најбржег отклањања поремећаја и повратка система у услове нормалног рада.

6.1.8. Извештавањем о раду преносног система, на бази извршених анализи рада, обезбеђују се неопходне повратне информације које, између осталог, могу бити од утицаја на:
- планирање развоја преносног система;
- техничке услове за прикључивање и повезивање објеката;
- начин планирања рада преносног система;
- управљање мрежом 400 kV, 220 kV, 110 kV;
- концепцију и садржај техничких норма и поступака.

6.2. ВРСТЕ И ОБИМ ПОМОЋНИХ И СИСТЕМСКИХ УСЛУГА

6.2.1. УВОД

6.2.1.1. Под системским услугама подразумевају се:
- примарна регулација;
- секундарна регулација;
- терцијарна регулација;
- регулација напона;
- купопродаја електричне енергије за компензацију нежељених одступања регулационе области;
- учешће у поновном успостављању преносног система након распада.

6.2.1.2. У циљу обезбеђења системских услуга, ЕМС АД са корисницима преносног система закључује уговор о пружању помоћних услуга, што обухвата:

- примарну резерву;
- секундарну резерву;
- терцијарну резерву;
- капацитете за регулацију напона;
- капацитете за успостављање преносног система након распада.

6.2.1.3. Корисник преносног система који са ЕМС АД има закључен уговор о пружању помоћних услуга дужан је да одржава у исправном стању сву опрему неопходну за пружање помоћних услуга која са његово средство, и да тренутно обавести ЕМС АД о промени на својим капацитетима по питању могућности и квалитета пружања ових услуга.

6.2.1.4. ЕМС АД може уговорити са другим операторима преносних система механизме за размену примарне, секундарне и терцијарне регулационе енергије и заједничко коришћење примарне, секундарне и терцијарне резерве у складу са прописима и правилима о раду интерконекције.

6.2.2. ПРИМАРНА РЕЗЕРВА

6.2.2.1. Надлежно тело ENTSO-E, на основу правила о раду интерконекције, прописује износ обавезне примарне резерве на годишњем нивоу за регулациону област ЕМС АД, која се обезбеђује из производних јединица у регулационој области ЕМС АД.

6.2.3. СЕКУНДАРНА РЕЗЕРВА

6.2.3.1. Минимални опсег секундарне резерве износи 160 MW и обезбеђује се из производних јединица у регулационој области ЕМС АД.

6.2.4. ТЕРЦИЈАРНА РЕЗЕРВА

6.2.4.1. За минималне износе директне терцијарне резерве усвајају се следеће вредности:
- 300 MW за позитивну резерву из производних јединица у регулационој области ЕМС АД;
- 150 MW за негативну резерву из производних јединица у регулационој области ЕМС АД.

6.2.5. РЕГУЛАЦИЈА НАПОНА

6.2.5.1. Помоћну услугу регулације напона морају пружити све генераторске јединице прикључене на преносни систем у складу са својим техничким карактеристикама.
6.2.6. КОМПЕНЗАЦИЈА НЕЖЕЉЕНИХ ОДСТУПАЊА РЕГУЛАЦИОНЕ ОБЛАСТИ

6.2.6.1. ЕМС АД је одговоран за реализацију програма компензације нежелених одступања своје регулационе области, који се израчунава у складу са правилима о раду интерконекције.

6.2.7. УЧЕШЋЕ У УСПОСТАВЉАЊУ ПРЕНОСНОГ СИСТЕМА

6.2.7.1. Помоћне услуге које корисници преносног система пружају у смислу успостављања преносног система након распада односно са на:
 - безнапонско покретање генератора;
 - острвски рад генератора.

6.3. ПЛАНОВИ ОДБРАНЕ ПРЕНОСНОГ СИСТЕМА

6.3.1. УВОД

6.3.1.1. Планови одбране преносног система имају за сврху да створе техничке и организационе предуслове како би се у случају озбиљних поремећаја очуvalа сигурност рада система, односно omогuћила нормализација ситуације.

6.3.1.2. У најгорем сценарију, за случај делимичног или тоталног распада преносног система, планови одбране морају прописати поступке који ће довести до најбржег могућег успостављања преносног система.

6.3.1.3. Планови одбране преносног система обухватају:
 - План подфrekвентне заштите;
 - Планове ограничења испоруке електричне енергије;
 - План успостављања преносног система.

6.3.1.4. ЕМС АД приликом одобравања преносног система, односно уговарања повезивања објеката, уређује учешће објеката у плановима одбране преносног система.

6.3.1.5. ЕМС АД израђује планове одбране преносног система у сарадњи са корисницима преносног система.

6.3.1.6. Корисници преносног система дужни су да обезбеде све неопходне податке за израду ових планова у роковима и форматима које захтева ЕМС АД.

6.3.1.7. Сви учесници у примени планова одбране преносног система морају се упознати са садржајем планова, у циљу њихове ефикасне примене.

6.3.1.8. Оперативно особље које је предвиђено да учествује у примени планова одбране преносног система мора се периодично обучавати за ту сврху.

6.3.2. ПЛАН ПОДФРЕКВЕНТНЕ ЗАШТИТЕ

6.3.2.1. План подфrekвентне заштите користи се као системска заштита преносног система од распада широких размера и испада великог дела производних јединица. Спроводи се у неколико фаза:
 1. 49,8 Hz – узбуњивање оперативног особља у центrimа управљања и важним преносним и објектима корисника преносног система;
 2. 49,0 Hz – прорада првог степена подфrekвентне заштите (искључује 10% потрошње);
 3. 48,8 Hz – прорада другог степена подфrekвентне заштите (искључује додатних 15% потрошње);
 4. 48,4 Hz – прорада трећег степена подфrekвентне заштите (искључује
5. 48,0 Hz – прорада четвртог степена подфrekвентне заштите (искључује додатних 15% потрошње);
6. 47,5 Hz – дозвољава се испад генератора у циљу њихове заштите од трајних оштећења.

6.3.2.2. Додатни степени подфrekвентне заштите обезбеђују се искључивањем са мреже мотор-генератора у реверзibilним хидроелектранама када су у пумпном режиму рада, односно пумпи у пумпним постројењима, а приликом пада фrekвенције у опсегу 49,0 – 49,8 Hz. У том смислу, ЕМС АД прописује подешења подфrekвентне заштите у оваквим објектима.

6.3.2.3. Оператори дистрибутивног система су дужни да учествују у Плану подфrekвентне заштите укључујући прописане изнose потрошње у окviru свог дистрибутивног система.

6.3.2.4. ЕМС АД у План подфrekвентне заштите укључује купце чији су објекти прикључени на преносни систем, у складу са могућностима раздвајања праваца напајања потрошње која се може укључити у овај план без неприхватљивих технолошких последица по интересе тог купца.

6.3.2.5. План подфrekвентне заштите подлеже редовним годишњим променама. Да би се то постигло, потребно је спровести следећи поступак:
- ЕМС АД доставља корисницима преносног система захтев за достављање података до 31. маја (оператору дистрибутивног система се доставља захтев за дефинисање списака дистрибутивних извода за укључивање у план подфrekвентне заштите);
- ЕМС АД проверава да ли поднети подаци од стране корисника преносног система задовољавају критеријуме из тачке 6.3.2.1. до 31. јула;
- ако критеријуми за израду плана нису испуњени од стране корисника, ЕМС АД контактира ове кориснике како би заједнички отклонили недостатке – ово усаглашавање мора се обавити до 31. августа;
- ЕМС АД доставља План подфrekвентне заштите корисницима преносног система у делу који се односи на ове кориснике до 5. октобра.

6.3.2.6. Ревидирани План подфrekвентне заштите ступа на снагу до 15. октобра.

6.3.2.7. Тачност мерења фреквенције за растерећење мора да буде до 100 mHz. Време реаговања уређује ЕМС АД.

6.3.2.8. Одржавање уређаја за фреквенцу заштиту у исправном стању, у надлежности је власника, односно носилаца права коришћења ових уређаја.

6.3.2.9. ЕМС АД и корисници преносног система у складу са својим овлашћењима обезбеђују да фреквента заштита делује у складу са Планом подфrekвентне заштите.

6.3.3. ПЛANOVI OГРАНИЧЕЊА ISPORUKЕ ЕЛЕКТРИЧНЕ ЕNERГИЈE

6.3.3.1. Планови ограничења испоруке електричне енергије одређују:
- мере које је потребно предузети пре ограничавања испоруке електричне енергије;
- начин спровођења ових ограничења.

6.3.3.2. Планови ограничења испоруке електричне енергије обухватају:
- План тренутног ограничења испоруке електричне енергије;
6.3.3.3. ЕМС АД израђује Планове ограничења испоруке електричне енергије уз консултације са корисницима преносног система.

6.3.3.4. Планови ограничења испоруке електричне енергије, као меру која претходи, односно прати ограничење испоруке електричне енергије, садрже и напонске редукције које се спроводе у објектима 220/х kV и 110/х kV (х < 110). Сви дистрибутивни објекти повезани са преносним системом морају бити оспособљени за примену напонских редукција.

6.3.3.5. План тренутног ограничења испоруке електричне енергије односи се на поремећаје великог интензитета када ограничење испоруке електричне енергије не трпи није нија мање одлагање. Овај план не води рачуна о било каквој селективности (може се искључити сваки објекат прикључен, односно повезан са преносном мрежом, или његов део).

6.3.3.6. План хитног ограничења испоруке електричне енергије намењен је поремећајима мањег интензитета када се извесно време може сачекати са ограничењем испоруке електричне енергије. Овај план има делимичну селективност и обухвата списак који садржи списак трансформатора 110/х kV (х < 110) или извода х kV.

6.3.3.7. Оператори дистрибутивног система дужни су да укључе мање 35% потрошње у оквиру свог дистрибутивног система у План хитног ограничења испоруке електричне енергије.

6.3.3.8. План дуготрајног ограничења испоруке електричне енергије сачињава се за поремећаје који трају дуже од два сата. Стога овај план води рачуна о селективности искључивања у периоду од 35 kV, 20 kV, 10 kV. Овај план служи као основа за ограничење испоруке електричне енергије у случају опште несташице енергије.

6.3.3.9. Оператори дистрибутивног система дужни су да укључе мање 60% потрошње дистрибутивног система у План дуготрајног ограничења испоруке електричне енергије.

6.3.3.10. Трајање ограничења испоруке електричне енергије временски је ограничено прописима који уређују област енергетике.

6.3.3.11. Планови ограничења испоруке електричне енергије подлежу редовним годишњим променама. Да би се то постигло, потребно је спровести следећи поступак:
- ЕМС АД доставља корисницима преносног система захтев за достављање података до 31. маја (писак дистрибутивних извода које корисник предложе за укључивање у планове);
- корисници преносног система достављају ЕМС АД захтеване податке до 30. јуна;
- ЕМС АД проверава да ли поднети подаци од стране корисника преносног система задовољавају критеријуме из тачака 6.3.3.7. и 6.3.3.9 до 31. јула;
- ако корисницима израду планова нису испуњени од стране корисника, ЕМС АД контактира овог корисника како би заједнички отклонили недостатке – ово усаглашавање мора се обавити до 31. августа;
- ЕМС АД доставља Планове ограничења испоруке електричне енергије корисницима преносног система у делу који се односи на ове кориснике до 5. октобра.

6.3.3.12. Ревидирани Планови ограничења испоруке електричне енергије ступају на снагу до 15. октобра.
6.3.3.13. Планови ограничења испоруке електричне енергије обухватају купце чији су објекти прикључени на преносни систем без неприхватљивих последица по њихове интересе. Под тим се подразумева да се води рачуна о степени приоритета купаца, изазивању опште опасности и узроковању материјалне штете великог обима.

6.3.4. ПЛАН УСПОСТАВЉАЊА ПРЕНОСНОГ СИСТЕМА

6.3.4.1. План успостављања преносног система обухвата неколико основних сценарија, тако да буде употребљив при сваком распаду.

6.3.4.2. ЕМС АД је у обавези да при изради овог плана предвиди да довољан број генераторских јединица у његовој регулативној области пружа системску услугу безнапонског покретања и острвског рада, како би се омогућило брzo успостављање преносног система у свим предвидивим ситуацијама.

6.3.4.3. У План успостављања преносног система укључују се сви корисници преносног система у складу са техничким карактеристикама објеката.

6.3.4.4. Неопходно је да се делови овог плана усагласе са суседним операторима преносног система, како би се постигла њихова компатибилност.

6.3.4.5. План успостављања преносног система је потребно проверавати приликом симулације распада.

6.3.4.6. ЕМС АД врши редовну ревизију Плана успостављања преносног система најмање једном у две године.

6.3.4.7. У случају измена у Плану успостављања преносног система, ЕМС АД доставља овај план свим корисницима преносног система у делу који се односи на њихове објекте најмање 15 дана пре ступања плана на снагу.

6.4. ПЛАНИРАЊЕ РАДА ПРЕНОСНОГ СИСТЕМА

6.4.1. УВОД

6.4.1.1. Планирање рада преносног система обухвата послове планирања који се односе на временски хоризонт од годину дана унапред до унутардневног.

6.4.1.2. Најзначајније активности које се спроводе у оквиру планирања рада преносног система су:

- израда Годишњег плана рада преносног система;
- израда Дневног плана рада преносног система;
- израда планова искључења у мрежи 400 кV, 220 кV, 110 кV;
- одређивање прекограничних преносних капацитета (у складу са одељком 5.2.1. Правила).

6.4.2. ГОДИШЊИ ПЛАН РАДА ПРЕНОСНОГ СИСТЕМА

6.4.2.1. Годишњи план рада преносног система има за сврху да испита да ли су задовољени основни предуслови за нормалан рад преносног система, укључујући и оцену да ли се могу очекивати проблеми у обезбеђивању системских услуга, односно проблеми у остваривању енергетског биланса Републике Србије у делу који се односи на електричну енергију.

6.4.2.2. ЕМС АД израђује Годишњи план рада преносног система до 30. новембра у години која претходи години за коју се план израђује.

6.4.2.3. Годишњи план рада преносног система обухвата на месечном нивоу:
- план потрошње, производње и размене електричне енергије;
- план обезбеђивања примарне, секундарне и терцијарне резерве;
- план набавке електричне енергије за покривање tehничких губитака у преносној мрежи;
- планирану вредност нето преносног капацитета;
односно:
- потрошњу, производњу и размену електричне енергије у сату максималног месечног оптерећења;
- план нерасположивости производних јединица по сваком дану;
- планове рада преносног система за карактеристичне дане.

6.4.2.4. ЕМС АД планира износе tehничких губитака у преносној мрежи на основу историјских података о износу губитака у претходном периоду и сагледавањем потрошње, производње и прекограничне размене електричне енергије, као и очекиваних измена у преносном система у наредним временским периодима.

6.4.2.5. План рада за карактеристичан дан из тачке 6.4.2.3. обухвата податке у складу са правилима о раду интерконекције. ЕМС АД је дужан да најмање 30 дана пре рока за подношење података који су vezани за карактеристичан dan, обавести балансно одговорне стране о датумима који ће се сматрати за карактеристичне dane.

6.4.2.6. Балансно одговорне стране су дужне да до 1. октобра у години која претходи години за коју се израђује Годишњи план рада преносног система, доставе ЕМС АД годишњи план рада својих балансних група који обухвата на месечном нивоу:
- план сумарне потрошње активне електричне енергије;
- план потрошње активне електричне енергије појединих објеката, на посебан захтев ЕМС АД;
- план потрошње активне електричне енергије за потребе пумпања;
- план производње активне електричне енергије (на прагу преноса) у објектима прикљученим на преносни систем;
- план сумарне производње у објектима прикљученим на преносни систем;
- план размене активне електричне енергије како у регулационој области ЕМС АД тако и на њеним границама (одвојено се приказују набавка и изнавод);
- планове расположивих капацитета за пружање уговорених системских услуга;
односно:
- план нерасположивости производних јединица прикључених на преносни систем по сваком дану и разложима нерасположивости;
- све планове из алинеје 1-7 ове тачке за сат максималног оптерећења у карактеристичном дану.

ЕМС АД одређује формат у коме му се достављају наведени планови и дужан је да га најмање 30 дана пре рока за подношење података објави на свом званичном сајту.

6.4.2.7. Уколико ЕМС АД на основу анализе сигурности за карактеристичне dane процени да услови нормалног рада нису задовољени, односно да нису испуњени услови за реализацију примарне, секундарне, терцијарне и регулацију напона, ЕМС АД ће се обратити балансно одговорним странама и затражити одговарајуће измене у поднетим плановима рада.

6.4.2.8. ЕМС АД спроводи редовну верификацију, односно корекцију Годишњег плана рада преносног система до сваког 25. дана у месецу М-1, при чему се верификација,
односно корекција овог плана односи на све месеце од месеца М до краја године.

6.4.2.9. У случају непредвиђене промене плана рада балансне групе које се нису могле сагледати пре рока из тачке 6.4.2.8. балансено одговорна страна је дужна да о њима хитно обавести ЕМС АД. Ова корекција не сме се односити на протекли период.

6.4.3. ДНЕВНИ ПЛАНОВИ РАДА

6.4.3.1 Увод

6.4.3.1.1. Дневни планови рада обухватају:
- дневне планове рада балансних група;
- Дневни план рада преносног система.

6.4.3.1.2. За пријаву, обраду и прихваћање дневних планова рада балансних група користи се MMS система. ЕМС АД обезбеђује редундантност овог система.

6.4.3.1.3. ЕМС АД објављује на својој интернет страници упутство за коришћење MMS система.

6.4.3.1.4. ЕМС АД и балансно одговорне стране обезбеђују редундантност комуникационог пута за потребе достављања и израде дневних планова рада.

6.4.3.1.5. ЕМС АД је обавезан да дефинише формате подataka и процедуру за пријаву, обраду и прихваћање дневних планова рада балансних група у нормалним околностима, као и у условима нерасположивости информационог система ЕМС АД, и објављује их на својој интернет страници.

6.4.3.1.6. ЕМС АД је обавезан да у најкраћем року обавести балансно одговорне стране о нерасположивости информационог система, односно о поновном успостављању нормалног рада информационог система.

6.4.3.1.7. Свака балансно одговорна страна одређује најмање једну особу која ће непрекидно бити доступна за комуникацију са ЕМС АД у вези израде дневних планова рада балансних група.

6.4.3.1.8. Пријаву дневног плана рада балансне групе врши његова балансно одговорна страна.

6.4.3.1.9. Основни временски интервал у оквиру дневних планова рада је један сат.

6.4.3.1.10. Увођењем заједничких правила за алокацију прекограничних преносних капацитета са суседним оператором преносног система, за поједине границе се могу усвојити другачија правила која се односе на пријаву планова прекограничне размене електричне енергије, што се уређује уговором са суседним оператором преносног система и ова правила су доступна на интернет страници ЕМС АД.

6.4.3.2. Процедура за пријаву и потврду дневног плана рада балансне групе

6.4.3.2.1. Балансно одговорна страна пријављује ЕМС АД дневни план рада своје балансне групе за дан Д у складу са упутством за коришћење MMS система најкасније до 14:30 у дану Д-1 за дан Д. MMS систем није расположив између 23:50 и 00:10.

6.4.3.2.2. Балансно одговорна страна може изменити пријављен дневни план рада за дан Д своје балансне групе која не обухвата балансне ентитете, за алинеје 1-3 из тачке 6.4.3.2.4. односно балансне групе која садржи балансне ентитете за алинеје 1-7 и 9-10 из тачке 6.4.3.2.5. не касније од 15:30 у дану Д-1 за дан Д.

6.4.3.2.3. Балансно одговорна страна може изменити пријављене блокове прекограничних размена из тачака 6.4.3.2.4 и 6.4.3.2.5 у дневном плану рада своје балансне групе за дан Д до 14:30 у дану Д-1, а од 14:30 до 15:30 у дану Д-1 само уколико
постоји неусаглашеност са пријавом прекограничног партнера коју је ЕМС АД добио од суседног оператора преносног система.

6.4.3.2.4. Дневни план рада балансне групе која не обухвата балансне ентитете, у зависности од улоге која је додељена балансно одговорној страни, за потребе пријаве дневних планова рада, што се уређује у уговору о балансној одговорности, садржи следеће:

- план укупне производње електричне енергије у сваком временском интервалу који није већи од збира одобрених снага појединачних генераторских јединица који припадају балансној групи;
- план укупне потрошње електричне енергије у сваком временском интервалу који није већи од збира одобрених снага управљиве потрошње и потрошње објеката ове балансне групе, односно план потрошње за одређене објекте на посебан захтев ЕМС АД (нпр. потрошња дистрибутивног подручја у другој регулативној области);
- план блокова интерне размене електричне енергије у сваком временском интервалу;
- план блокова прекограничне размене електричне енергије у сваком временском интервалу.

6.4.3.2.5. Дневни план рада балансне групе која садржи балансне ентитете, у зависности од улоге која је додељена балансно одговорној страни за потребе пријаве дневних планова рада, што се уређује у уговору о балансној одговорности, садржи следеће:

- план производње електричне енергије појединачно за сваки балансни ентитет који у сваком временском интервалу није већи од вредности одобрених снага за тај ентитет;
- максималну и минимальну вредност снаге за сваки балансни ентитет;
- максималну вредност снаге за сваку генераторску и пумпно-акумулаторску јединицу у сваком временском интервалу која није већа од одобрене снаге;
- располаживост генераторских и пумпно-акумулаторских јединица у сваком временском интервалу;
- план управљиве потрошње електричне енергије појединачно за сваки балансни ентитет у сваком временском интервалу који није већи од одобрене снаге за тај ентитет;
- план потрошње објеката балансне групе која садржи балансне ентитете, односно план потрошње за одређене објекте на посебан захтев ЕМС АД (нпр. потрошња дистрибутивног подручја у другој регулативној области) у сваком временском интервалу;
- план блокова интерне размене електричне енергије у сваком временском интервалу;
- план блокова прекограничне размене електричне енергије у сваком временском интервалу;
додатно се доставља дефинисана количина резерве за тај балансни ентитет.

6.4.3.2.6. Формате наведених планова из тачка 6.4.3.2.4-5. дефинише ЕМС АД.

6.4.3.2.7. Дневни план рада балансне групе који не садржи балансне ентитете мора бити избалансиран у сваком временском интервалу, односно алгебарска сума вредности снаге свих алинеја из тачке 6.4.3.2.4. мора бити једнака нули у сваком временском интервалу.

6.4.3.2.8. Дневни план рада балансне групе која садржи балансне ентитете, мора бити избалансиран у сваком временском интервалу, односно алгебарска сума вредности снаге прве, пете, шесте и осме алинеје из тачке 6.4.3.2.5. мора бити једнака нули у сваком временском интервалу.

6.4.3.2.9. Уколико дневни план рада балансне групе, изузев дневног плана рада организованог тржишта електричне енергије, постана неизбалансиран као последица активности из тачака 6.4.3.2.13-16. и 6.4.3.2.19. ЕМС АД оставља могућност тој балансној групи да изменама у унутардневном процесу избалансира свој дневни план рада у складу са одељком 6.4.3.3. Балансно одговорна страна чији је дневни план рада остао неизбалансиран и након унутардневног процеса сноси одговорност дефинисану угледном уговором о балансној одговорности.

6.4.3.2.10. За сваки временски интервал и за сваки смер размене, дозвољена је пријава само по једном блоку интерне размене електричне енергије између две балансне групе.

6.4.3.2.11. Размена електричне енергије између учесника на тржишту електричне енергије, који припадају истој балансној групи, мора да се пријави једном балансној групи.

6.4.3.2.12. Блок интерне размене електричне енергије пријављују обе балансно одговорне стране, на које се тај блок размене односи. Уколико то није случај, ЕМС АД обавештава обе балансно одговорне стране о неправилности балансно одговорну страну у чијем дневном плану рада постоји такав блок интерне размене.

6.4.3.2.13. Уколико балансно одговорна страна која није балансно одговорна страна организованог тржишта електричне енергије, не отклони неправилност из тачке 6.4.3.2.12. у року предвиђеном за измену дневног плана рада (у складу са тачком 6.4.3.2.2.), ЕМС АД утврђује да је вредност пријављеног блока интерне размене електричне енергије нула у сваком временском интервалу.

6.4.3.2.14. Уколико је балансно одговорна страна из тачке 6.4.3.2.12. балансно одговорна страна организованог тржишта електричне енергије, тада по истеку рока предвиђеног за измену дневног плана рада (у складу са тачком 6.4.3.2.2.), ЕМС АД утврђује да су вредности пријављених блока интерне размене електричне енергије прихваћене у сваком временском интервалу и намеће другој балансно одговорној страни из размене идентичан блок интерне размене.

6.4.3.2.15. Блокови интерне размене између две балансне групе, од којих ниједна није организована тржиште електричне енергије, морају бити идентични. Уколико то није случај, односно постоје различите вредности снаге у неким временским интервалима, које се могу регистровати тек након пријаве дневних планова рада обе балансне групе, ЕМС АД хитно обавештава обе балансне одговорне стране о томе у складу са упутством за коришћење MMS система. Уколико балансно одговорне стране не отклоне неправилност у року предвиђеном за измену дневног плана рада, ЕМС АД утврђује да се као обавезујућа прихвата нижа вредност и наведених дневних планова рада у спорним временским интервалима.

6.4.3.2.16. Блокови интерне размене између две балансне групе, од којих је једна организована тржиште електричне енергије, морају бити идентични. Уколико то није случај, односно постоје различите вредности снаге у неким временским интервалима,
ЕМС АД обавештава обе балансно одговорне стране о томе у складу са упутством за коришћење MMS система. Уколико балансно одговорна страна која није балансно одговорна страна организованог тржишта електричне енергије не отклони неправилност у року предвиђеном за измену дневног плана рада (у складу са тачком 6.4.3.2.2.), ЕМС АД утврђује да се као обавезујућа прихвата вредност из дневног плана рада организованог тржишта електричне енергије у тим временским интервалима.

6.4.3.2.17. У дневном плану рада балансне групе пријављена вредност снаге у блоку прекограничне размене електричне енергије у свим временским интервалима може бити нижа или једнака вредности права на коришћење додељеног прекограничног преносног капацитета и мора бити целобројна вредност. Уколико је веда од права на коришћење додељеног прекограничног преносног капацитета није доступна у MMS систему, ЕМС АД о томе обавештава балансно одговорну страну и чека да истекне рок предвиђен за измену дневног плана рада (у складу са тачком 6.4.3.2.3.). Уколико промене у вредностима права на коришћење додељеног прекограничног преносног капацитета дате у MMS систему свака балансно одговорна страна има обавезу да пријави свој дневни план рада у складу са тачком 6.4.3.2.4.

6.4.3.2.19. Блок прекограничне размене који је пријавила балансно одговорна страна користећи вредности права на коришћење додељеног прекограничног преносног капацитета доступног у MMS систему, у свом дневном плану раду мора бити идентичан пријави блока прекограничне размене прекограничног партнера која ЕМС АД добија од суседног оператора преносног система. У случају различитих вредности снаге у неким од временским интервалама, ЕМС АД обавештава балансно одговорну страну о неправилности и омогућава јој да отклони неправилност. Уколико балансно одговорна страна не отклони неправилност у року предвиђеном за измену дневног плана рада (у складу са тачком 6.4.3.2.3.) или уколико ЕМС АД не приме информацију од стране суседног оператора преносног система о промени пријаве прекограничног партнера, ЕМС АД у сарадњи са суседним оператором преносног система, на основу правила о раду интерконекције и међусобно закључених споразума, утврђује обавезујућу пријаву мању вредност снаге за наведени блок прекограничне размене.

6.4.3.2.20. Блок прекограничне размене који је пријавила балансно одговорна страна у свом дневном плану рада до 14:30 у дану D-1 за дан D користећи вредности права на коришћење додељеног прекограничног преносног капацитета доступног у MMS систему и који је усаглашен са суседним оператором преносног система не може бити измењен у периоду од 14:30 до 15:30 у дану D-1 за дан D.

6.4.3.2.21. Сва балансно одговорна страна која садржи балансне ентитете и има улогу одговорне стране за пријаву производње електричне енергије је обавезна да пријави дневни план рада који садржи прву алинеју из тачке 6.4.3.2.4.

6.4.3.2.22. Сва балансно одговорна страна која садржи балансне ентитете и има улогу одговорне стране за пријаву производње електричне енергије је обавезна да пријави
дневни план рада који садржи прву алинеју из тачке 6.4.3.2.5.

6.4.3.2.23. Свака балансно одговорна страна која не садржи балансне ентитете и има улогу одговорне стране за пријаву потрошње електричне енергије је обавезна да пријави дневни план рада који садржи другу алинеју из тачке 6.4.3.2.4.

6.4.3.2.24. Свака балансно одговорна страна која садржи балансне ентитете и има улогу одговорне стране за пријаву потрошње електричне енергије је обавезна да пријави дневни план рада који садржи пету и шесту алинеју из тачке 6.4.3.2.5.

6.4.3.2.25. Уколико балансно одговорна страна која има улогу одговорне стране за пријаву производње електричне енергије, односно улогу одговорне стране за пријаву потрошње електричне енергије, не пријави дневни план рада у складу са тачкама 6.4.3.2.21-24, до рока за пријаву дневних планова рада и измену дневних планова рада балансне групе за дан Д (у складу са тачком 6.4.3.2.2.), ЕМС АД сматра да је вредност планова из тачака 6.4.3.2.2-5. нула у свим временским интервалима.

6.4.3.2.26. У случају постојања неправилности у пријављеним дневним плановима рада који садрже алинеје наведене у тачкама 6.4.3.2.4-5., а нарочито везане за карактеристичне ситуације из тачака 6.4.3.2.13-16. и 6.4.3.2.19. балансно одговорна страна може изменити дневни план рада своје балансне групе у роковима дефинисаним у тачкама 6.4.3.2.3.

6.4.3.2.27. Балансно одговорна страна не може отказати ни делимично ни у потпуности блок прекограничне размене у прихваћеном дневном плану рада.

6.4.3.2.28. ЕМС АД доставља балансно одговорној страни која не садржи балансне ентитете, прихваћене дневне планове рада за блокове интерне и прекограничне размене, прихваћен план за укупну производњу електричне енергије и прихваћен план за укупну потрошњу електричне енергије за дан Д у дану пријаве Д-1 до 15:45. Изузетно, ЕМС АД може продужити период у случају нерасположивости информационих система и закаснелог пријема потребних података од стране суседних оператора преносног система, о чему ће ЕМС АД благовремено обавестити балансно одговорну страну.

6.4.3.2.29. ЕМС АД доставља балансно одговорној страни који садржи балансне ентитете, прихваћене дневне планове рада за блокове интерне и прекограничне размене, прихваћен план за укупну производњу електричне енергије на основу пријављене прве алинеје тачке 6.4.3.2.5. и прихваћен план за укупну потрошњу електричне енергије на основу пријављене пете и шесте алинеје тачке 6.4.3.2.5. за дан Д у дану пријаве Д-1 до 15:45. Изузетно, ЕМС АД може продужити период у случају нерасположивости информационих система и закаснелог пријема потребних података од стране суседних оператора преносног система, о чему ће ЕМС АД благовремено обавестити балансно одговорну страну.

6.4.3.2.30. Балансно одговорна страна има право да измени свој дневни план рада у случајевима из тачака 6.4.3.2.13-17., 6.4.3.2.19. и 6.4.3.2.25. у складу са одељком 6.4.3.3.

6.4.3.3. Унутардневне измене дневног плана рада балансне групе

6.4.3.3.1. Балансно одговорна страна може пријавити унутардневну измену дневног плана рада балансне групе за дан Д у дану пријаве Д-1 од 18:00, и у самом дану Д на који се план односи, и то најкасније 60 минута пре почетка временског периода на који се односи измена.

6.4.3.3.2. У случају нерасположивости информационих система или закаснелог пријема потребних података од стране суседних оператора преносног система ЕМС АД отказује време пријаве унутардневних измена из тачке 6.4.3.3.1. док се проблем не реши.
6.4.3.3. Унутардневна измена дневног плана рада балансне групе биће прихваћена уколико:
- су пријављени блокови прекогранчничких размена идентични разменама које је доставио суседни оператор преносног система;
- су пријављени блокови интерних размена идентични пријавама балансно одговорних страна на које се односи размена;
- се вредност планиране производње појединачно за сваки балансни ентитет, за расположиве генераторске јединице, налази у опсегу минималне и максималне вредности снаге за тај ентитет;
- је вредност планиране производње балансне групе нижа од збира вредности његових појединачних одобрених снага за сваки балансни ентитет;
- се вредност плана управљиве потрошње електричне енергије појединачно за сваки балансни ентитет, за расположиве пумпно-акумулативне јединице, налази у опсегу минималне и максималне вредности снаге за тај ентитет;
- је вредност плана потрошње објеката балансне групе, односно вредност план потрошње за одређене објекте на посебан захтев ЕМС АД (нпр. потрошња дистрибутивног подручја у другој регулационој области) мања од вредности одобрене снаге.

6.4.3.3.5. У случају унутардневне пријаве блока прекогранчничких размене, пријављена вредност мора бити идентична добијеном праву на прекогранчни преносни капацитет унутар дана. На крају сваког месеца ЕМС АД проверава да ли је пријављена вредност прекогранчничких размена идентична добијеном праву на прекогранчни преносни капацитет унутар дана. Приликом уочене неправилности, ЕМС АД поступа са уговором о балансној одговорности.

6.4.3.4. ЕМС АД потврђује унутардневну измену дневног плана рада балансне групе за блокове прекогранчничких размена најкасније 15 минута пре почетка временског периода на који се односи измена, док за блокове интерне размене, план укупне производње електричне енергије и план укупне потрошње електричне енергије потврђује у 23:00 у дану Д за дан Д.

6.4.3.4. Дневни план рада преносног система
6.4.3.4.1. ЕМС АД израђује Дневни план рада преносног система.
6.4.3.4.2. Дневни план рада преносног система израђује се на основу:
- расположивих прекогранчничких преносних капацитета по свакој граници и смеру;
- прихваћених дневних планова рада балансних група;
- прогнозираних потрошње електричне енергије;
- прогнозираних губитака у преносном систему;
- планираног износа примарне, секундарне и терцијарне резерве;
- расположивости генераторских јединица, односно балансних ентитета.
6.4.3.4.3. Дневни план рада преносног система обухвата следеће сатне податке:
- планове потрошње електричне енергије балансних група;
- план потрошње на нивоу преносног система који израђује ЕМС АД на основу интерних методологија;
- план потрошње електричне енергије за потребе пумпања;
- план блокова прекогранчничких размена електричне енергије балансних група и прекогранчничких размене ЕМС АД;
- план блокова интерне размене електричне енергије између балансних група и интерне размене између балансних група и ЕМС АД;
- план производње активне електричне енергије балансних ентитета;
- прорачунате вредности примарне резерве балансних ентитета који су планирани за рад, односно који су расположиви у листи ангажовања балансне резерве у секундарној и терцијарној регулацији;
- прорачунате вредности опсега секундарне резерве балансних ентитета који су планирани за рад, односно који су расположиви у листи ангажовања балансне резерве у секундарној регулацији;
- прорачунате вредности терцијарне резерве балансних ентитета који су планирани за рад, односно који су расположиви у листи ангажовања балансне резерве у терцијарној регулацији;
- план расположивости балансних ентитета и листу ангажовања балансне резерве у терцијарној регулацији;
- план надокнаде техничких губитака у преносној мрежи;
- план компензације нежељених одступања регулационе области ЕМС АД у складу са правилима о раду интерконекције;
- програм фреквенције који доставља надлежни координациони центар у интерконекцији;
- податке о нето и располагивом преносном капацитету, као и о маргини поузданог преноса за сваку границу.

6.4.3.4.4. Дневни план рада преносног система је израђен тако да су испуњени услови за нормалан рад, а ако то није могуће, услови за сигуран рад.

6.4.3.3.5. ЕМС АД спроводи анализе сигурности на основу Дневног плана рада преносног система.

6.4.3.4.6. Уколико анализе сигурности покажу да пријављени дневни планови рада балансних група не обезбеђују предуслове за нормалан рад, ЕМС АД предузима одговарајуће мере из следећег списка:
- проценује који од пријављених дневних планова рада највише утичу на нарушување услова нормалног рада;
- контактира и саветује се са подносицима ових планова у циљу њихове измене;
- планира конфигурацију и параметре мреже 400 kV, 220 kV и 110 kV;
- отказује планирана искључења у мрежи 400 kV, 220 kV и 110 kV;
- планира примену редиспечинга;
- анализира утицај прекограничних размена електричне енергије;
- договара одговарајуће блокове прекограђничких размена електричне енергије у складу са уговором са другим операторима преносних система.

6.4.3.4.7. У случају да мере из тачке 6.4.3.4.6. нису довољне да се обезбеди нормалан рад, ЕМС АД одлучује о ограничавању, односно одбијању прекограничних размена електричне енергије сходно правилима о раду интерконекције и споразумима са суседним операторима преносног система.

6.4. Планови искућења у мрежи 400 kV, 220 kV, 110 kV

6.4.1. Опште правила планирања искућења

6.4.1.1. ЕМС АД израђује планове искућења елемената ЕЕС у координацији са корисницима преносног система и суседним операторима преносног система.
6.4.4.1.2. ЕМС АД израђује годишње, кварталне и седмичне планове искључења елемената ЕЕС прве, друге и треће групе Категоризације. Корисници преносног система по потреби израђују планове искључења елемената ЕЕС четврте групе.

6.4.4.1.3. Плановима искључења су обухваћени радови у безнапонском стању који се изводе у трећој зони, у смислу прописа којим се уређују опште мере заштите на раду, на елементима електроенергетских објеката напонских нивоа 400 kV, 220 kV и 110 kV, као и оним елементима нижег напонског нивоа који су саставни део тих елемента (терцијар трансформатора, звездиште трансформатора и слично) и остали радови који захтевају искључење елемената ЕЕС.

6.4.4.1.4. Приликом израде планова искључења ЕМС АД је обавезан да усклађује искључења у мрежи 400 kV, 220 kV, 110 kV са плановима рада производних јединица у циљу очувања услова нормалног, а ако то није могуће, сигурног рада током извођења искључења.

6.4.4.1.5. Љ ЕМС може одредити (наметнути) план рада генераторским јединицама у циљу обезбеђења нормалних услова рада преносног система током планираних искључења елемената преносног система, највише:
- 100 сати за турбогенераторске јединице које као погонско гориво користе угљ;
- 250 сати за хидроелектране;
током једне календарске године по јединици, а у складу са техничким карактеристикама ових јединица.

Овако одређени план рада за дан Д, ЕМС АД доставља произвођачу у периодима када је он планирао располаживост генераторске јединице, и то:
- до 12:00 у дану Д-3 за турбогенераторске јединице;
- до 08:30 у дану Д-1 за хидроелектране.

6.4.4.1.6. Предлози планова искључења због инвестиција ЕМС АД и корисника преносног система морају бити обухваћени плановима искључења.

6.4.4.1.7. Искључења елемената ЕЕС који су имовина корисника преносног система (ДВ поља, спојна поља, сабирнице, трансформаторска поља и слично), а који захтевају искључење далековода врсте ЕЕС, корисник преносног система мора планирати у терминима када је ЕМС АД планирао искључења далековода.

6.4.4.1.8. Ближе процедуре за израду планова искључења, издавања одобрења за искључења елемената ЕЕС и спровођење основних мера обезбеђења места рада на елементима објеката ЕЕС, као и облик, форму и садржину документа (захтеви, одobreња и сл.) на основу којих се одобрава искључење, уређује ЕМС АД у сарадњи са корисницима преносног система.

6.4.4.2. Трајање редовних искључења

6.4.4.2.1. За трајање искључења због редовног одржавања усвајају се вредности из табеле 6.1. за далеководе и табеле 6.2. за остала елемента ЕЕС, али не мање од 2 дана:

6.4.4.2.2. Радови на редовном одржавању блок-трансформатора и осталих елемената чије је искључење неопходно током застоја припадајуће генераторске јединице морају се реализовати за време застоја те генераторске јединице.
Табела 6.1.

<table>
<thead>
<tr>
<th>Опис далековода</th>
<th>Максимално трајање искључења</th>
</tr>
</thead>
<tbody>
<tr>
<td>једноструки далеководи 110 kV, за сваких 10 km</td>
<td>1 дан</td>
</tr>
<tr>
<td>једноструки далеководи 220 kV, за сваких 10 km</td>
<td>1,1 дан</td>
</tr>
<tr>
<td>једноструки далеководи 400 kV, за сваких 10 km</td>
<td>1,25 дана</td>
</tr>
<tr>
<td>двоструки далеководи</td>
<td>време за једноструки × 1,2</td>
</tr>
<tr>
<td>сваки прелаз далековода преко река</td>
<td>додатно један дан</td>
</tr>
</tbody>
</table>

Табела 6.2.

<table>
<thead>
<tr>
<th>Опис елемената ЕЕС</th>
<th>Максимално трајање искључења</th>
</tr>
</thead>
<tbody>
<tr>
<td>систем сабирница</td>
<td>1 дан</td>
</tr>
<tr>
<td>трансформатор 110/x kV</td>
<td>3 дана</td>
</tr>
<tr>
<td>трансформатор 220/x kV</td>
<td>5 дана</td>
</tr>
<tr>
<td>трансформатор 400/x kV</td>
<td>6 дана</td>
</tr>
<tr>
<td>све врсте поља</td>
<td>3 дана</td>
</tr>
</tbody>
</table>

6.4.4.3. Годишњи план искључења

6.4.4.3.1. Годишњи план искључења се израђује као план искључења по кварталима и месецима и уколико је могуће по данима.

6.4.4.3.2. Као подлоге за израду Годишњег плана искључења и Годишњег плана искључења далековода и трансформатора важних за нормалан рад интерконекције у региону Југоисточне Европе користе се:

- предлози планова застоја енергетских објеката за производњу електричне енергије и предлози планова искључења елемената ЕЕС у објектима корисника преносног система, који се достављају ЕМС АД најкасније до 20. септембра текуће године за наредну годину;
- предлог плана искључења елемената ЕЕС у преносном систему, који ЕМС АД доставља корисницима преносног система најкасније до 1. новембра текуће године за наредну годину.

6.4.4.3.3. Годишњи план искључења далековода и трансформатора важних за нормалан рад интерконекције у региону Југоисточне Европе израђује се у складу са правилима о раду интерконекције до 20. новембра текуће године за наредну годину и представља основу за израду Годишњег плана искључења. Уколико је неопходно, ЕМС АД делове овог плана доставља заинтересованим корисницима преносног система до 25. новембра, у циљу ревизије њихових првобитних предлога планова искључења.

6.4.4.3.4. Корисници преносног система достављају ЕМС АД измењене предлоге својих годишњих планова искључења до 10. децембра.

6.4.4.3.5. Годишњи план искључења елемената ЕЕС прве, друге и треће групе за наредну годину израђује се најкасније до 15. децембра текуће године. Годишњи план искључења ЕМС АД достављају корисницима преносног система најкасније у року од 5 дана од дана изrade.

6.4.4.3.6. Годишње планове искључења ЕМС АД може менати на сопствену иницијативу или по захтеву корисника преносног система, ако постоје оправдане разлоги и уз сагласност погођених корисника преносног система. Промене се односе на период од наступања околности за промену до истека године за коју је донет план искључења. Промене се могу вршити само у делу годишњег плана за који није донет квартални план...
искључења, осим ако су са променом сагласни ЕМС АД и корисници преносног система на које се промена односи. Корисници преносног система могу поднети ЕМС АД захтев за промену плана најкасније до 25. дана у месецу М-2 за месец М. Ако искључење елемената једне групе захтева додатно искључење елемената неке друге групе, елементи који се додатно искључују морају се пријавити за планове искључења те друге групе.

6.4.4.4. Квартални план искључења

6.4.4.4.1. Квартални планови искључења се праве на основу Годишњег плана искључења и поднетих захтева за измену Годишњег плана искључења, осим за први квартал који се израђују заједно са Годишњим планом искључења. Квартални планови искључења се израђују по данима.

6.4.4.4.2. Квартални предлози планова застоја енергетских објеката за производњу електричне енергије, предлози планова искључења објеката за дистрибуцију електричне енергије и предлози планова за искључење елемената електроенергетских објеката осталих корисника преносног система, достављају се ЕМС АД најкасније 30 дана пре крајњег рока за израду кварталног плана, осим за први квартал који се достављају у терминима за Годишњи план искључења.

6.4.4.4.3. Квартални план искључења елемената ЕЕС прве, друге и треће групи израђује се најкасније 15 дана пре почетка периода на који се план односи. Кварталне планове искључења ЕМС АД доставља корисницима преносног система најкасније у року од 5 дана од дана израде. У случајевима када се за почетак квартала планира искључивање при којем се мора применити меро ограничења или прекида испоруке електричне енергије, ЕМС АД о томе обавештава купца прикљученог на преносни систем најмање 15 дана унапред, односно оператора дистрибутивног система најмање 20 дана унапред.

6.4.4.4.4. Кварталне планове искључења ЕМС АД може мењати на сопствену иницијативу или по захтеву корисника преносног система, ако постоје оправдани разлоги, а уз сагласност свих погођених корисника преносног система. Промене се односе на период од наступања околности за промену до истека квартала за који је донет план искључења. Промене се могу вршити само у делу кварталног плана за који није донет седмични план искључења, осим ако су са променом сагласни ЕМС АД и корисници преносног система на које се промена односи. Корисници преносног система могу поднети ЕМС АД захтев за промену плана најкасније до среде у 10:00 часова седмице С-2 за седмицу С. Ако искључење елемената једне групе захтева додатно искључење елемената неке друге групе, елементи који се додатно искључују морају се пријавити за планове искључења те друге групе.

6.4.4.5. Седмични план искључења

6.4.4.5.1. Седмични планови искључења се израђују по данима и сатима.

6.4.4.5.2. Седмични планови искључења утврђени кварталним планом искључења за седмицу за коју се доноси седмични план, коригују се у складу са одобреним захтевима за продужење рока извођења радова који су већ отпочети, захтевима за извођење радова који су одложени на основу налога центара управљања ЕМС АД и захтевима за искључења због насталог или утврђеног потенцијалног квара или захтева за интервентне радове, као и одређеним новим терминима искључења за одложене или продужене радове.

6.4.4.5.3. Уколико се планиране радови на неком елементу ЕЕС из оправданих разлога не обаве или не заврше у терминима предвиђеним седмичним планом искључења, корисник преносног система предлаже ЕМС АД нови термин искључења. Нови термин
искључења предлаже се тако да не нарушува усвојени квартални план искључења. Уколико се не може обезбедити додатни термин искључења у постојећем кварталу, потребно је то искључење планирати у неком од следећих квартала. ЕМС АД је одговоран за одређивање новог термина искључења за одложене или продужене радове уз координацију са корисником преносног система.

6.4.4.6. Подношење и одобравање захтева за искључење
6.4.4.6.1. У циљу прописивања процедуре подношења и одобравања захтева за искључење, ЕМС АД дефинише образац за елементе прве, друге и треће групе елемената ЕЕС.
6.4.4.6.2. Редовну размену списака овлашћених лица, која могу попуњавати образац из тачке 6.4.4.6.1. између ЕМС АД и корисника преносног система потребно је обавити сваке године до 1. марта текуће године.
6.4.4.6.3. Захтев за искључење подноси се по три основа:
 - за радове на елементима ЕЕС;
 - за радове у близини елемената ЕЕС;
 - за радове који не захтевају основне мере обезбеђења места рада.
6.4.4.6.4. Корисници преносног система дужни су доставити ЕМС АД захтев за искључење због планираних радова до среде у 10:00 часова текуће седмице за наредну седмицу. Захтеви за искључење који се подносе због већ насталог квара могу се поднети одмах по наступању кvara (интервентни радови).
6.4.4.6.5. Одобрење за искључење планираних радова ЕМС АД доставља подносиоцу захтева до четвртка у 15:00 часова текуће седмице, за искључење планирана током наредне седмице, а за интервентне радове до 60 минута након пријема захтева за искључење.
6.4.4.6.6. Одобрење за искључење на основу којег корисник преносног система остаје без напајања, ЕМС АД издаје пошто је претходно обавестио погођене кориснике преносног система, односно јавност, у складу са уредбом која уређује услове испоруке и снабдевања електричном енергијом.

6.4.5. ДОДАТНИ ПОДАЦИ ЗА ПЛАНИРАЊЕ РАДА У ИНТЕРКОНЕКЦИЈИ
6.4.5.1. Балансно одговорна страна доставља ЕМС АД податке за карактеристичне сате према правилима о раду интерконекције за два дана унапред:
 - производњу електричне енергије појединачно за сваки балансни ентитет;
 - укупну потрошњу електричне енергије.
Наведени подаци се достављају до 14:00 у дану Д-2 за дан Д.
6.4.5.2. ЕМС АД обавештава балансно одговорне стране о карактеристичним сатима и формату података из тачке 6.4.5.1.

6.5. УПРАВЉАЊЕ ПРЕНОСНИМ СИСТЕМОМ
6.5.1. Увод
6.5.1.1. ЕМС АД управља преносним системом на начин који омогућава:
 - очување нормалног рада преносног система;
 - поуздану испоруку електричне енергије корисницима преносног система;
 - оптимално коришћење расположивих преносних капацитета;
постицање максимално могуће економичности у раду препносног система као целине у датим условима.

6.5.1.2. Управљање препносним системом се реализује из центара управљања ЕМС АД који су установљени на два нивоа:
- на нивоу Националног диспечерског центра који управља препносном мрежом 400 кV и 220 кV, те интерконективним далеководима 110 кV;
- на нивоу регионалних диспечерских центара који управљају препносном мрежом 110 кV, изузев интерконективних далековода 110 кV.

6.5.1.3. Преносни и објекти корисника препносног система ангажују се сагласно техничким карактеристикама за те објекте које је дао испоручилац опреме, а које су у току техничког прегледа и евентуалног пробног рада верификоване, и у складу са погонским стањем објекта, те уговором којим се уређује експлоатација објекта.

6.5.2. УПРАВЉАЊЕ У НОРМАЛНОМ РАДУ

6.5.2.1. Издавање налога

6.5.2.1.1. Налози се издају телефонским путем, или на други начин сходно уговору којим се уређује експлоатација објекта, а који је закључен између ЕМС АД и корисника препносног система.

6.5.2.1.2. Налоге издају диспечери центара управљања ЕМС АД. Ови налоги се морају извршити без одлагања.

6.5.2.1.3. Сви корисници препносног система дужни су да спроводе налоге надлежних центара управљања ЕМС АД који се односе на производњу, потрошњу, уклопно стање у мрежи 400 кV, 220 кV, 110 кV, те опрему и подешења уређаја који су под надлежношћу ЕМС АД, а на начин уређен Правилима и одговарајућим уговорима. Корисници препносног система не могу намењати уклопно стање у деловима својих објеката којима управља ЕМС АД у складу са тачком 1.2.2., већ искључиво по налогу или уз претходну сагласност надлежног центра управљања ЕМС АД.

6.5.2.1.4. Балансни ентитети самоустоично реализују последњи прихваћени план рада, али се најмање 15 минута пре синхронизације и развезивања генератора, односно управљиве потрошње са мреже, односно промене снаге балансног ентитета у односу на последњи прихваћен план рада овог ентитета и вредност новог плана рада балансног ентитета.

6.5.2.1.5. Центри управљања ЕМС АД издају налоге за балансирање и редиспечиње балансних ентитета. Ови налоги се издају благовремено унапред (имајући у виду време потребно за реализацију налога у складу са техничким карактеристикама генератора, односно управљиве потрошње), а садрже време почетка и краја важења налога, износ промене снаге балансног ентитета у односу на последњи прихваћен план рада овог ентитета и вредност новог плана рада балансног ентитета.

6.5.2.1.6. У случају налога издатог од стране надлежног центра управљања ЕМС АД који може угрозити безбедност људи или објеката, подређено особље у смислу управљања препносним системом (руковаоци у препносним објектима, односно особље у центрима управљања корисника препносног система) није дужно да изврши налог, али мора да образложи због чега то није учинило. Са друге стране, ово особље је слободно да предложи управљачке акције надређеном центру управљања ЕМС АД на основу информација којима располаже, са тим да оно сноси потпуну одговорност за тачност тих информација.

6.5.2.1.7. У случају усменог издавања налога прималац налога дужан је да понови налог издаваоцу налога, а издавалац налога потврди тачност, или се процедура издавања
налога понавља.

6.5.2.1.8. Центри управљања ЕМС АД воде Дневнике рада. Дневник рада води се хронолошки. У Дневнике рада уписују се сви релевантни подаци за управљање преносним системом, а нарочито:
- издачи и примљени налози;
- испади и кварови елемената мреже 400 kV, 220 kV, 110 kV;
- манипулације у мрежи 400 kV, 220 kV, 110 kV;
- проблематика производње;
- проблематика сигурности рада мреже 400 kV, 220 kV, 110 kV;
- спровођење ограничења испоруке електричне енергије;
- проблематика рада опреме за управљање;
- проблематика заштите мреже 400 kV, 220 kV, 110 kV;
- издата, односно опозвана документа за рад;
- приспели телеграми;
- остали информације релевантне за рад преносног система.

6.5.2.2. Регулација фреквенције и снаге размене

6.5.2.2.1. Регулација фреквенције и снаге размене обавља се кроз следеће активности:
- дејством примарне регулације;
- дејством секундарне регулације;
- дејством терцијарне регулације;
- обезбеђивањем додатних размена електричне енергије ангажовањем балансне резерве од снабдевача, односно оператора преносног система.

6.5.2.2.2. ЕМС АД је обавезан да у сваком тренутку обезбеди опсег примарне регулације дефинисан Правилима.

6.5.2.2.3. Сваки корисник преносног система који пружа системску услугу примарне регулације мора на захтев ЕМС АД да активира примарне регулаторе.

6.5.2.2.4. ЕМС АД је дужан да омогући непрестано вршење секундарне регулације, као и да обезбеди у сваком тренутку Правилима дефинисан опсег ове регулације. ЕМС АД може размењивати секундарну регулациону енергију са суседним операторима преносних система у складу са правилима о раду интерконекције и закљученим споразумима.

6.5.2.2.5. Сваки корисник преносног система који пружа системску услугу секундарне регулације мора на захтев ЕМС АД да укључи своје генераторске јединице, декларисане за рад у секундарној регулацији, у ову врсту регулације.

6.5.2.2.6. Уколико је грешка регулационе области толика да се не може отклонити пуним активирањем секундарног регулационог опсега, ЕМС АД правовремено издаје налог за активирање терцијарне резерве кроз балансни механизам, у складу са Правилима о раду тржишта електричне енергије.

6.5.2.2.7. Налоге за ангажовање балансних ентитета ЕМС АД издаје узимајући у обзир да почетно време ангажовања балансног ентитета мора бити изводиво у складу са техничким карактеристикама и тренутним располаживим капацитетом ентитета за ангажовање у балансном механизму, као и временом издавања налога.

6.5.2.2.8. Сви налоги за ангажовање балансних ентитета морају бити евидентирани од стране ЕМС АД. Ови налоги обухватају следеће податке:
- разлог за ангажовање балансног ентитета (балансирање система, угрожена сигурност система, остало); и
- ЕИС идентификациони код ангажованог балансног ентитета;
- временски интервал ангажовања;
- смер терцијарне регулације (навише или наниже);
- наложена промена снаге у MW у односу на важећи даневни план рада балансног ентитета.

6.5.2.2.9. ЕМС АД је дужан да води евиденцију о активиранијо балансној резерви. Подаци који се евидентирају су следећи:
- износ активиране балансне резерве у MW;
- временски интервал ангажовања;
- произвођач, снабдевач, односно оператор преносног система од кога је активирана балансна резерва.

6.5.2.2.10. За случај да је директна, или планска, или укупна терцијарна резерва мања од минималног износа уређеним Правилима, ЕМС АД предузима мере да обезбеди недостајућу резерву. Ове мере обухватају:
- издавање налога за покретање или потискивање генераторских јединица;
- договарање прекограничне размене електричне енергије.

6.5.2.2.11. За случај да суседни оператор преносног система затражи прекограничну размену електричне енергије за потребе балансирања свог система, ЕМС АД се може сагласити са овом разменом ако је резерва већа од минималног износа уређеним Правилима, а у изузетним случајевима и када овај услов није задовољен ако је регистровано, односно предвиђено значајно регулационо одступање суседног система.

6.5.2.3. Регулација напона

6.5.2.3.1. Регулација напона спроводи се на основу Дневног плана рада преносног система и стварних услова погона преносног система у циљу одржавања напона у прописаним границима.

6.5.2.3.2. Напон се превасходно регулише издавањем одговарајућих налога за генерисање или апсорпцију реактивне енергије у свим генераторским јединицама које су у погону, те синхроним компензаторима и статичким компензационим постројењима који имају угледну обацеву за пружање системске услуге регулације напона.

6.5.2.3.3. Напон се осим генерисањем, односно апсорцијом реактивне енергије регулише и управљањем токовима активне енергије у мрежи 400 kV, 220 kV, 110 kV, и то променом позиција на регулационим трансформаторима.

6.5.2.3.4. У случају да је због регулације напона потребно на појединим генераторима смањити производњу активне енергије због производње реактивне, ЕМС АД примењује редиспечинг.

6.5.2.3.5. ЕМС АД издаје налоге за промену позиција на блок-трансформаторима свих генераторских јединица у ситуацији када су дозвољени напонски опсези у преносној мрежи и на генератору неусаглашени.

6.5.2.3.6. У објектима у којима се сустичу интерконективни далеководи, напон се одржава у опсегу који је дефинисан са суседним оператором преносног система.

6.5.2.4. Надгледање рада преносног система

6.5.2.4.1. Центри управљања ЕМС АД надгледају рад преносног система у реалном времену. Надгледање се врши помоћу SCADA система и телефонским контактирањем преносних и објеката корисника преносног система.

6.5.2.4.2. ЕМС АД обезбеђује следеће информације у реалном времену у својим центрима управљања:
- фреквенцију система;
- грешку регулационе области (само за Национални диспчерски центар);
- сигнале индикација и аларма у преносним и објектима корисника преносног система;
- токове активних и реактивних снага, као и вредности струја у мрежи 400 kV, 220 kV, 110 kV и објектима корисника преносног система (који су од интереса за рад мреже 400 kV, 220 kV, 110 kV);
- активне и реактивне снаге на генераторским јединицама;
- статус расклопне опреме;
- позиције на регулационим трансформаторима;
- вредности напона на сабирницама постројења мреже 400 kV, 220 kV, 110 kV и далеководима;
- аларме и сигнализацију који се односе на ваљаност измерених вредности, рад заштитних уређаја, статус комуникације и слично.

6.5.2.4.3. ЕМС АД дефинише у договору са суседним оператором преносног система неопходне информације које се размењују у реалном времену.

6.5.2.4.4. Центри управљања ЕМС АД морају бити опремљени неопходном рачунарском опремом за прикупљање и обраду података потребних за анализу сигурности рада преносног система.

6.5.2.5. Извођење радова у мрежи 400 kV, 220 kV, 110 kV

6.5.2.5.1. Искључење елемената ЕЕС извршава се на основу одобрења за искључење које даје ЕМС АД по поднетим захтевима за искључење, у складу са седмичним плановима искључења или интервентним искључењима.

6.5.2.5.2. Дозвола за рад и обавештење о завршетку рада обједињени су у обрасцу, који дефинише ЕМС АД, за извођење радова на елеменитима ЕЕС прве, друге и треће групе и као такав је обавезујући за све кориснике преносног система.

6.5.2.5.3. Рубрике обрада из тачке 6.5.2.5.2. могу попуњавати овлашћена лица надлежних центара управљања и руководиоци радова. Редовну размену списака овлашћених лица, која могу попуњавати обрада, између ЕМС АД и корисника преносног система потребно је обавити сваке године до 1. марта текуће године.

6.5.2.5.4. За радове на елеменитима ЕЕС чији је носилац права коришћења ЕМС АД, руководилац радова чије се име налази у захтеву за искључење најављује радове надлежном центру управљања ЕМС АД најмање 30 минута пре термина назначеног у захтеву за искључење и тражи извођење манипулација.

6.5.2.5.5. Уколико се радови изводе на елеменитима ЕЕС који су власништво, односно чији је носилац права коришћења корисник преносног система, надлежни центар управљања ЕМС АД најмање 30 минута пре термина назначеног у захтеву за искључење и тражи извођење манипулација.

6.5.2.5.6. Уколико се радови изводе из захтева за искључење и управљања ЕМС АД, руководилац радова чије се име налази у захтеву за искључење најављује радове надлежном центру управљања ЕМС АД најмање 30 минута пре термина назначеног у захтеву за искључење и тражи извођење манипулација.

6.5.2.5.7. За радове на елеменитима ЕЕС и радове у близини елеменити ЕЕС, након спровођења основних мера за обезбеђивања места рада надлежни центар управљања и руководилица радова попуњавају дозволу за рад, чиме се дозвола за рад сматра
отвореном. Попуњавање дозволе за рад подразумева давање одговарајуће изјаве диспечера надлежног центра управљања и пријем ове изјаве од стране руководиоца радова. По завршетку радова, руководилац радова и надлежни центар управљања попуњавају обавештење о завршетку рада, чиме се дозвола за рад сматра затвореном. Попуњавање обавештења о завршетку рада подразумева давање одговарајуће изјаве руководиоца радова и пријем ове изјаве од стране диспечера надлежног центра управљања.

6.5.2.5.8. За елементе ЕЕС који су власништво, односно чији је носилац права коришћења корисник преносног система, за радове на елементима ЕЕС и радове у близини елемената ЕЕС, дозволу за рад и обавештење о завршетку рада попуњава облашћено лице надлежног центра управљања корисника преносног система и руководилац радова. Након попуњавања дозволе за рад односно обавештења о завршетку рада надлежни центар управљања корисника преносног система дужан је одмах извести надлежни центар управљања ЕМС АД о термину нерасположивости елемената ЕЕС.

6.5.2.5.9. За радове који не захтевају основне мере обезбеђивања места рада на елементима ЕЕС по спровођењу потребних манипулацији надлежни центар управљања обавештава одговорно лице о уклоњењу стања елемената ЕЕС који су од интереса за извршење радова и дозвољава извођење радова. По завршетку радова одговорно лице обавештава надлежни центар управљања о завршетку радова. У овом случају се не попуњавају дозвола за рад и обавештење о завршетку рада.

6.5.2.5.10. За елементе ЕЕС који су власништво, односно чији је носилац права коришћења корисник преносног система, за радове који не захтевају основне мере обезбеђивања места рада, након што дозволи одговорном лицу извођења радова односно добије информацију да су радови завршени, надлежни центар управљања корисника преносног система дужан је одмах извести надлежни центар управљања ЕМС АД о термину нерасположивости елемената ЕЕС.

6.5.2.5.11. Радови предвиђени захтевом за искључење се морају завршити до предвиђеног времена које је наведено у обрасцу. Уколико се радови ипак не могу завршити у том року, руководилац радова, у координацији са власником, односно носиоцима права коришћења енергетског објекта, је дужан да о томе благовремено обавести надлежни центар управљања са којим је попунио дозволу за рад, обавести га о стању радова и затражити продужење радова. У случају да је то учињено са центром управљања корисника преносног система, овај центар управљања преноси ту информацију надлежном центру управљања ЕМС АД. Надлежни центар управљања ЕМС АД одлучује о продужењу радова.

6.5.2.5.12. ЕМС АД је дужан да у року од 2 сата обавести центар управљања корисника преносног система о реализацији планираних и непланираних искључења у мрежи 400 kV, 220 kV, 110 kV у случају да то наруша поузданост корисниког приступа енергетској мрежи.

6.5.2.5.13. Надлежни центар управљања ЕМС АД има право да изда налог за прекид или одлагање планираних искључења уколико је угрожен нормалан, односно сигуран рад преносног система.

6.5.2.6. Прикупљање података

6.5.2.6.1. ЕМС АД прикупља све податке неопходне за планирање и анализу рада преносног система у основној временској јединици која се користи за планирање рада преносног система, а то су:
- производња активне и реактивне енергије свих електрана прикључених на преносну мрежу;
- производња активне и реактивне енергије свих електрана прикључених на дистрибутивну мрежу;
- производња реакције компензационих постројења прикључених на преносну мрежу;
- вредности напона у релевантним постројењима мреже 400 кВ, 220 кВ, 110 кВ;
- одступање фреквенције и синхроног времена;
- тренутни токови активних и реактивних снага за одређене временске пресеке;
- сатна размена електричне енергије по интерконективним далеководима;
- конфигурација мреже 400 кВ, 220 кВ, 110 кВ;
- стане високонапонске опреме у преносним и објектима корисника преносног система;
- обим и време трајања обезбеђених и ангажованих системских услуга;
- регистрација препоручених дозвољених оптерећења далековода, трансформатора, односно одступања напона или фреквенције од прописаних граница;
- остали подаци неопходни за планирање и анализу рада преносног система.
Корисници преносног система дужни су да доставе ЕМС АД наведене податке који се односе на њихове објекте, на начин и у формату уређеном од стране ЕМС АД.

6.5.3. УПРАВЉАЊЕ У УСЛОВИМА ПОРЕМЕЂАЈА
6.5.3.1. Увод
6.5.3.1.1. ЕМС АД предузима све мере које су му на располагању да би се избегао поремећај.
6.5.3.1.2. Неопходно је да центри управљања ЕМС АД имају могућност да на основу примљених информација региструју поремећај и његове карактеристике, како би на основу ових података одредили управљачке акције за елиминисање или ограничење поремећаја.
6.5.3.1.3. Уколико је до поремећаја дошло, ЕМС АД је у обавези да предузме у најкраћем временском периоду све неопходне техничке мере у циљу спречавања ширења поремећаја и да омогући повратак свих параметара у мрежи 400 кВ, 220 кВ, 110 кВ у прописане границе, те да поново успостави напајање електричном енергијом корисника преносног система који су без ње остали. Ове мере обухватају:
- покушај укључивања испалих елемената у мрежи 400 кВ, 220 кВ, 110 кВ;
- остале манипулације у мрежи 400 кВ, 220 кВ, 110 кВ;
- редиспечинг;
- промену позиција на регулационим трансформаторима;
- отказивање планираних искључења у мрежи 400 кВ, 220 кВ, 110 кВ и прекидање радова који су у току;
- уговарање одговарајућих размена електричне енергије;
- отказивање или редуковање постојећих размена електричне енергије (ако промене у производњи и уговарање нових размена електричне енергије није могуће спровести, односно ако резултати ових управљачких акција нису довољни за решавање поремећаја);
- ограничавање испоруке електричне енергије;
- остала законом и подзаконским актима прописане мере.
Приликом избора наведених мера, ЕМС АД се руководи принципом минималних трошкова и неремењења тржишта електричне енергије (колико је то могуће).

6.5.3.2. Санирање поремећаја

6.5.3.2.1. Надлежни центар управљања ЕМС АД је дужан да у случају преоптерећења далековода, трансформатора или неког другог елемената мреже 400 kV, 220 kV, 110 kV предузме мере за растерећење тог елемената.

6.5.3.2.2. Дозвољено је привремено блокирање заштита од преоптерећења за време санирања поремећаја, али оптерећење на тим елеменитама не смеју превазићи вредности које могу узроковати оштећења елемената мреже 400 kV, 220 kV, 110 kV или суседних објеката.

6.5.3.2.3. У случају испада елемената у мрежи 400 kV, 220 kV, 110 kV, оперативно особље центара управљања ЕМС АД прикупља податке о деловању заштита на основу којих одлучује о управљачким акцијама које је потребно спровести.

6.5.3.2.4. Центри управљања корисника преносног система достављају надлежном центру управљања ЕМС АД податке о деловањима заштите са свих елемената свог објекта који су сврстани у прву, другу или трећу групу Категоризације, као и елемената који су галвански прикључени на овакве елементе. Ови подаци обухватају у случају испада далековода:

- назив објекта;
- назив далековода (напонски ниво, број и правац);
- врсту заштите која је деловала;
- врсту кvara (једнофазни, двофазни итд.);
- фазе погођене кварам;
- степен у којем је деловала заштита;
- информацију о проради уређаја за АПУ и да ли је покушај АПУ-а био успешан или не;

а у случају испада трансформатора:

- назив објекта;
- ознаку трансформатора;
- све врсте заштитних уређаја који су деловали;
- оптерећење трансформатора непосредно пре испада;
- температура амбијенте, уља и намотаја у тренутку непосредно пре испада;
- прораду стабилне противпожарне заштите (у објектима где постоји).

Центар управљања корисника преносног система дужан је да обавести надлежни центар управљања ЕМС АД и о другим околностима које су пратиле испад, као што су:

- манипулације у објекту;
- извођење радова у објекту;
- уочљиви трагови кvara у постројењу (електрични лук, дим, пожар, необични мирис итд.);
- атмосферска пражњења у околини објекта и друге временске прилике.

6.5.3.2.5. У случају трајног испада далеководних прекидача дејством заштите далековода на обе стране далековода, центар управљања ЕМС АД може дати један налог за укључење далековода најмање 3 минута после испада уколико је приликом испада забележен неуспешан АПУ, односно ако није било АПУ-а. Укључење далековода изводи се са стране далековода где се очекују мање струје квара, осим ако се ради о далеководу који повезује постројење електране, када се проба стављања далековода под
напон врши према постојењу електране. Уколико дође до поновног испада далековода дејством заштите која указује на постојање трајног квара на далеководу, далековод се не укључује док се не отклони квар. Изузетно, центар управљања ЕМС АД може поновити налог за укључење далековода у следећим случајевима:
- испада далековода везаних у звезду;
- испада далековода који немају прекидач;
- неселективних испада;
- осталих испада када се секционисањем мреже може поновним слањем напона утврдити елемент мреже на коме се налази квар;
- залеђивања далековода или другим ситуацијама када постоји утицај метеоролошких прилика, растинja и грађевинских објеката на далековод, а по пријему информације са терена од надлежног лица.

6.5.3.2.6. Корисници преносног система дужни су да у најкраћем временском року (нпр. коришћењем даљинске команде), по налогу центра управљања ЕМС АД, укључе испале елементе преносног система у својим објектима, осим ако сигнали заштите указују да постоји квар у том објекту, када је дозвољено да корисник преносног система у најкраћем могућем року изврши визуелни преглед постојења.

6.5.3.2.7. Надлежни центар управљања ЕМС АД може затражити измену подешења заштите у циљу формирања уклопне шеме која обезбеђује најпосебнију испоруку електричне енергије објектима корисника преносног система за време трајања квара на елементу мреже 400 kV, 220 kV, 110 kV.

6.5.3.2.8. Уколико је дошло до испада елемента у мрежи 400 kV, 220 kV, 110 kV, при чему је прописаном процедуром установљен трајан квар, оперативно особље центара управљања ЕМС АД, уколико процени да испад угрожава нормалан рад преносног система, даје налог овлашћеним лицима од стране ЕМС АД, односно центру управљања корисника преносног система за интервентно покретање екипа које ће санирати квар.

6.5.3.2.9. Корисници преносног система дужни су да обавесте надлежни центар управљања ЕМС АД о стању свог објекта и потенцијалним кваровима који могу да изазову испад објекта или његовог дела.

6.5.3.2.10. У случају да оперативно особље центара управљања ЕМС АД добије званичну информацију о потенцијалном квару од стране овлашћеног лица (из ЕМС АД или корисника преносног система), ово особље ће предузети следеће активности:
- сагледава последице искључења, односно испада тог елемента;
- сагледава управљачке акције како би се одржао нормалан, односно сигуран рад преносног система у случају искључења, односно испада тог елемента;
- обавештава надлежне службе ЕМС АД, односно корисника преносног система;
- уколико нађе за потребно, искључује елемент на коме је пронађен потенцијални квар;
- уколико процени да неопходно искључење угрожава нормалан рад преносног система, издаје налог овлашћеним лицима од стране ЕМС АД, односно центру управљања корисника преносног система, за покретање екипа које ће санирати квар.

6.5.3.2.11. ЕМС АД сарађује са суседним операторима преносног система у интерконекцији у циљу координисане експлоатације и избегавања инцидената на интерконективним далеководима, као и када је за решавање проблема у нашем преносном систему неопходна помоћ суседног оператора преносног система и обратно.
укључујући и договарање прекограничне размене електричне енергије у складу са закљученим споразумима и правилима о раду интерконекције.

6.5.3.3. Ограничење испоруке електричне енергије

6.5.3.3.1. У случају недостатка активне снаге у преносном систему, напонског слома тј. недостатка реактивне снаге у систему, преоптерећења елемента мреже 400 kV, 220 kV, 110 kV или неког другог поремећаја, при чему прети опасност нарушавања нормалног рада преносног система, може се приступити ограничењу испоруке електричне енергије у целом или појединим деловима система применом Планова ограничења испоруке електричне енергије, а након што су претходно предузете све могуће мере како би се избегла примена поменутих планова. Том приликом, надлежни центар управљања ЕМС АД одлучује коју ће врсту плана применити.

6.5.3.3.2. Ако корисник преносног система одбије да спроведе План ограничења испоруке електричне енергије у изnosу задатом од стране ЕМС АД, ЕМС АД је овлашћен да искључи делове, или целокупне објекте овог корисника преносног система, и то до вредности задатог износа, уколико је могуће.

6.5.3.3.3. На захтев Владе Републике Србије, ЕМС АД учествује у примени мера ограничења испоруке електричне енергије у случају опште несташице електричне енергије, након што од Владе Републике Србије прими обавештење о наступању околности за примену ових мера.

6.5.3.3.4. ЕМС АД на погодан начин благовремено обавештава кориснике преносног система и надлежне оргane о планираним и очекиваним сметњама и прекидима у испоруци електричне енергије, осим када је то немогуће због брзине реаговања у циљу спречавања распада дела или целог преносног система.

6.5.3.4. Успостављање преносног система

6.5.3.4.1. Ако дође до делимичног или потпуног распада преносног система, надлежни центри управљања ЕМС АД и корисника преносног система успостављају преносни систем руководећи се Планом успостављања преносног система.

6.6. РАД СИСТЕМА ЗАШТИТЕ

6.6.1. Документација и техничка упутства

6.6.1.1. ЕМС АД мора да располаже са ажурном документацијом која се односи на типове и подешења свих заштита како у сопственим објектима, тако и у објектима корисника преносног система.

6.6.1.2. Корисник преносног система је дужан да ЕМС АД достави ажурну документацију о еквивалентним функционалним променама или реконструкцијама система заштите у својим објектима, а које утичу на пренос електричне енергије, као и одобрени план подешења заштита из тачке 4.2.11.4.1.

6.6.1.3. ЕМС АД утврђује основне техничке захтеве за подешавање заштита далековода и енергетских трансформатора у мрежи 400 kV, 220 kV, 110 kV.

6.6.2. Преподешење, замена и одржавање

6.6.2.1. Преподешење или замена система заштите у објектима корисника преносног система који утичу на рад мреже 400 kV, 220 kV, 110 kV врши се искључиво уз претходну сагласност ЕМС АД.

6.6.2.2. Корисник преносног система је дужан да, након преподешења постојеће заштите или замене заштите, извести ЕМС АД најкасније три радна дана након уведених измена.
у системе заштите у свом објекту.

6.6.2.3. ЕМС АД, односно корисник преносног система, обезбеђује периодични преглед и одржавање система заштите у својим објектима, у складу са прописом којим се утврђују технички нормативи за одржавање електроенергетских објеката.

6.6.2.4. Заштите на интерконективним далеководима преподешавају се сагласно споразумима са суседним оператором преносног система.

6.6.3. Функционисање у реалном времену

6.6.3.1. ЕМС АД координира рад заштите за све кориснике преносног система ради обезбеђивања максимално дозвољених времена исključenja кваворарова, a koja su наведена у одељку 4.2.11. Одступања од максимално дозвољених времена исključenja дозвољена су само због технолошке застарелости утређених прекидача, односно уређаја за заштиту, са тим да та одступања нису већа од 10%.

6.6.3.2. У случају да је анализра поремећаја у мрежи 400 kV, 220 kV, 110 kV показала неселективно деловање система заштита у објектима корисника преносног система, ЕМС АД је дужан да предузмеmere у оквиру својих надлежности како би се у најкраћем року отклониле неправилности.

6.6.3.3. У случају нерасположивости главног заштитиног уређаја далековода или једне од више основних заштита енергетског трансформатора, могућ је временски ограничен погон штићеног елемента само са резервним заштитним уређајем, односно прежестим основним заштитарама, а у складу са мерама и поступцима при дјейству заштитних и аутоматских уређаја у мрежи 400 kV, 220 kV, 110 kV које утврђује ЕМС АД.

6.6.4. План подешења заштита од преоптерећења

6.6.4.1. ЕМС АД израђује и примењује План подешења заштита од преоптерећења далековода за зимску и летњу сезону.

6.6.4.2. План подешења заштита од преоптерећења далековода уважава техничке карактеристике далековода и припадајуће високоnапонске опреме у далеководним пољима, a према очекиваним сезонским метеоролошким условима, са циљем да се обезбеди ефикасна заштита далековода и припадајуће високоnапонске опреме од траjне деформације коju може да изазове термичko напрезањe услед превисоког струjног оптерећењa.

6.6.4.3. Планом подешења заштита од преоптерећења далековода се обухватају сви 400 kV и 220 kV далеководи, као и далеководи 110 kV на коjима се могу очекивати преоптерећењa.

6.7. РАД КОМУНИКАЦИОНОГ И ТЕХНИЧКОГ СИСТЕМА УПРАВЉАЊА

6.7.1. КОМУНИКАЦИОНИ СИСТЕМ

6.7.1.1. ЕМС АД своjим комуникационим системом омогућава континуалну комуникацију са морнасцем преносног система, учесницима на тржишту електричне енергије и другим операторима преносног система у складу са правилима о раду интерконекције.

6.7.1.2. За случај отказа уређаја и праваца за комуникацију, Решењем о прикључењу, Уговором о повезивању, односно уговором коjим се регулише експлоатациjа објекта корисника преносног система, предвиђа се процедура за комуникациjу јавним везама.
6.7.1.3. Комуникација мора бити обезбеђена за разговор, AGC сигнале, SCADA систем, заштитне уређаје и информације неопходне за функционисање тржишта електричне енергије.

6.7.1.4. Корисници преносног система и ЕМС АД, у складу са својим надлежностима, обезбеђују континуални пренос неопходних података у надлежни центар управљања ЕМС АД.

6.7.1.5. Сви системи, правци и уређаји за комуникацију морају имати одговарајућу резерву за случај отказа.

6.7.1.6. Сви телефонски разговори вођени из центара управљања ЕМС АД снимају се на одговарајуће уређаје и чувају најмање 30 дана.

6.7.2. ТЕХНИЧКИ СИСТЕМ УПРАВЉАЊА

6.7.2.1. Технички систем управљања мора бити дизајниран и коришћен тако да ЕМС АД може испунити све обавезе везане за управљање мрежом 400 kV, 220 kV, 110 kV на начин прописан Правилима.

6.7.2.2. Центри управљања ЕМС АД морају имати јасно и разумљиво приказане параметре у мрежи 400 kV, 220 kV, 110 kV. Ови параметри се морају приказивати у реалном времену.

6.7.2.3. Адекватно и поудаљено резервно напајање центара управљања ЕМС АД, као и осталих критичних објеката по питању обезбеђивања неопходних података за израчунавање грешке регулационе области мора се обезбедити и периодично испитивати најмање једном годишње.

6.7.2.4. Сви интерконективни далеководи морају бити опремљени уређајима за телеметрију активне снаге и активне енергије, а одговарајући сигнали на располагању надлежном центру управљања ЕМС АД.

6.7.2.5. ЕМС АД мора имати могућност архивирања вредности измерених величина у циљу анализирања рада преносног система, понашања генераторских јединица и израде извештаја о раду преносног система.

6.7.2.6. Сви генератори који учествују у секундарној регулацији морају бити интегрисани у одговарајуће мерно-управљачко коло које ће у реалном времену достављати сигнале за формирање грешке регулационе области.

6.7.3. ПРИВРЕМENA НЕРАСПОЛОЖИВОСТ ЦЕНТАРА УПРАВЉАЊА ЕМС АД

6.7.3.1. У случају привремене нерасположивости неког од регионалних диспетерских центара, његове функције преузима Национални диспетерски центар. У том смислу, Национални диспетерски центар мора располагати одговарајућом документацијом и SCADA сигналима.

6.7.3.2. У случају привремене нерасположивости Националнog диспетерског центра његове функције преузима резервни Национални диспетерски центар.

6.7.3.3. Услови за поновно успостављање рада центра управљања ЕМС АД (квалификовано особље, опрема и процедуре) морају се обезбедити 24 сата на дан.

6.7.4. ОДРЖАВАЊЕ КОМУНИКАЦИОНЕ И ОПРЕМЕ ЗА УПРАВЉАЊЕ

6.7.4.1. ЕМС АД и корисници преносног система дужни су да своју опрему коja служи за комуникацију и управљање мрежом 400 kV, 220 kV, 110 kV одржавају у исправном стању.
6.7.4.2. Услови за поновно успостављање рада опреме (квалификовано особље, опрема и процедуре) за комуникацију и управљање мрежом 400 kV, 220 kV, 110 kV морају бити обезбеђени 24 сата на дан.

6.7.4.3. Радови на одржавању опреме за комуникацију и управљање мрежом мрежом 400 kV, 220 kV, 110 kV морају се планирати тако да се не угрози нормалан рад преносног система. Приликом планирања ових радова, ЕМС АД сарађује са корисницима преносног система и суседним операторима преносног система.

6.7.5. ЗАХТЕВИ ПРЕМА КОРИСНИЦИМА ПРЕНОСНОГ СИСТЕМА

6.7.5.1. Комуникационе опреме у објектима корисника преносног система која потпада под одредбе Правила је опрема која је неопходна за комуникацију центара управљања ЕМС АД са овим објектом, односно са осталим преносним и објектима корисника преносног система.

6.7.5.2. Корисници преносног система на основу техничких услова изнетих у поглављу 4. достављају техничком систему управљања ЕМС АД све информације у реалном времену неопходне за одвијање управљачких акција.

6.7.5.3. Корисник преносног система мора поседовати документацију која се односи на комуникациону и опрему за управљање преносним системом инсталирану у свом објекту. На захтев ЕМС АД, корисник преносног система мора ставити на увид документацију наведену у овом оделку.

6.7.5.4. Корисник преносног система дужан је да у случају настанка квара на опреми за комуникацију, односно управљање преносним системом ставити на увид документацију наведену у овом оделку.

6.7.5.5. Корисник преносног система мора најкасније у року од три дана најавити и затражити сагласност ЕМС АД за искључивање опреме за комуникацију, односно управљање преносним системом у свом објекту.

6.8. РАД УРЕЂАЈА ЗА СТАБИЛНОСТ

6.8.1. Уређај за стабилизацију ЕЕС мора бити активан током нормалног погона и погона у условима поремећаја. Код реверзибилне генераторске јединице овај уређај мора бити активан и током генераторског и током пумпног режима рада.

6.8.2. Уређај за стабилизацију ЕЕС може бити привремено деактивиран од стране корисника преносног система само током процеса покретања, односно заустављања генераторске јединице.

6.8.3. Уколико анализе стабилности покажу да је неопходна утврђивања системе за пригушење осцилација (стабилизатор ЕЕС), ЕМС АД и власник, односно носилац права коришћења генераторске јединице покренуће преговоре о утврђивању ових система.

6.8.4. Све модификације уређаја за стабилност у објектима корисника преносног система, односно на генераторима који утичу на стабилност преносног система морају се координисати са ЕМС АД.

6.9. ИЗВЕШТАВАЊЕ О РАДУ ПРЕНОСНОГ СИСТЕМА

6.9.1. УВОД

6.9.1.1. Рад преносног система прати се и анализира на основу података о раду појединих делова односно елемената овог система, који се прикупљају:
- техничким системом управљања;
посредством уређаја за даљински пренос мерења и сигнала;
усменим и писменим путем од стране корисника преносног система.

6.9.1.2. Извештаји о раду преносног система обухватају редовне и ванредне извештаје. Корисници преносног система дужни су доставити ЕМС АД све неопходне податке за израду извештаја наведених у овом одељку у року и формату које одреди ЕМС АД.

6.9.1.3. Приликом израде, достављања и објављивања извештаја, ЕМС АД посебну пажњу обраћа на поверљивост информација које се налазе у извештају.

6.9.2. РЕДОВНИ ИЗВЕШТАЈИ

6.9.2.1. ЕМС АД сачињава редовне извештаје о раду преносног система. Редовни извештаји садрже податке о:
- оствареном конзуму у енергији и снази;
- оствареној производњи;
- утрошеној енергији на пумпање;
- прекограничној размени електричне енергије;
- губицама у преносном систему;
- напонима у карактеристичним тачкама мреже 400 kV, 220 kV, 110 kV;
- учешћу корисника преносног система у системским услугама;
- нерасположивим електранама и узроцима нерасположивости;
- дијаграму производње, размене и конзума;
- испадима и квартовима у мрежи 400 kV, 220 kV, 110 kV;
- искључењима и укључењима у мрежи 400 kV, 220 kV, 110 kV;
- балансирању и редиспечингу;
- обезбеђеном резерви сагласно уговорима о системским услугама;
- квалитету секундарне регулације;
- важнијим погонским догађајима;
- прикључењима и повезивањем објеката на преносни систем;
- значајнијим реконструкцијама и доградњама преносних и објеката корисника преносног система;
- осталим подацима важним за рад преносног система.

6.9.2.2. Редовни извештаји израђују се на дневном, седмичном, месечном и годишњем нивоу, а садрже одређене податке из тачке 6.9.2.1.

6.9.2.3. ЕМС АД је дужан да најдаље до 31. марта текуће године сачини редовни годишњи извештај о раду преносног система који се односи на прошлу годину и објави га на својој интернет страници.

6.9.3. ВАНРЕДНИ ИЗВЕШТАЈИ

6.9.3.1. ЕМС АД сачињава и доставља надлежним органима и погођеним корисницима преносног система ванредни извештај о погонским и догађајима у преносном систему у случајевима када је дошло до прекида испоруке електричне енергије (из преносног система, односно у преносни систем) редукције или укидања уговорених размена електричне енергије од стране ЕМС АД, односно када ЕМС АД оцени да последице погонског догађаја могу угroziti нормалан рад преносног система у наступајућем периоду и функционисање тржишта електричне енергије, у року од 3 радна дана након наведеног догађаја.
6.9.3.2. На захтев ЕМС АД, корисник преносног система доставља ЕМС АД у најкраћем могућем року податке о погонском догађају у свом објекту који је утицао на рад преносног система.

6.9.3.3. ЕМС АД сачињава и доставља надлежним органима ванредни извештај и уколико оцени да се у наступајућем периоду могу очекивати тешкоће у снабдевању електричном енергијом купаца и функционисању тржишта електричне енергије.
ПОГЛАВЉЕ 7: КОРИШЋЕЊЕ И ОДРЖАВАЊЕ ОБЈЕКАТА

7.1. УВОД

7.1.1. КОРИШЋЕЊЕ ОБЈЕКАТА

7.1.1.1. У овом поглављу су обрађени аспекти коришћења (експлоатације) преносних и објеката корисника преносног система који су од значаја за нормалан и поуздан рад наведених објеката и последично читавог преносног система.

7.1.1.2. Како би се експлоатација објеката што боље уредила, у овом делу Правила је уређен и садржај уговора којим се регулише експлоатација објеката који закључују ЕМС АД и корисник преносног система.

7.1.2. ОДРЖАВАЊЕ ОБЈЕКАТА

7.1.2.1. Сагласно прописима који уређују планирање и изградњу објеката, власник, односно носилац права коришћења објекта обезбеђује извођење радова на одржавању објеката. Редовне, ванредне и специјалистичке прегледе и испитивања објеката, могу да раде привредна друштва, односно друга правна лица која испуњавају прописане услове у погледу стручног кадра и опремљености за обављање послова.

7.1.3. ХАВАРИЈА ОБЈЕКАТА

7.1.3.1. У случају хаварије у преносним објектима ЕМС АД пријављује хаварију надлежним органима; привремено отклања последице санацијом објекта; обезбеђује потребна добра, услуге и радове како би отклонио све штетне последице хаварије.

7.2. ОПШТИ УСЛОВИ КОРИШЋЕЊА ОБЈЕКАТА

7.2.1. Општи услови коришћења преносних и објеката корисника преносног система одређују техничке и организационе услове експлоатације ових објеката који су од интереса за нормалан рад преносног система и самих објеката.

7.2.2. Сви технички и организациони услови прописани Правилима сматрају се за опште услове коришћења преносних и објеката корисника преносног система. Све услуге које ЕМС АД пружа корисницима преносног система у оквиру општих услова коришћења објеката сматрају се за стандардне услуге оператора преносног система.

7.2.3. Ако се коришћење објеката одвија ван општих услова који су дефинисани Правилима, тада корисник преносног система, односно ЕМС АД, у складу са својим обавезама, предузимају мере да усагласе коришћење оваквог објекта са одредбама Правила.

7.2.4. Уколико корисник преносног система жели посебне услове коришћења свог објекта са којима је ЕМС АД сагласан, односно ако мере из члана 7.2.3. није могуће спровesti, тада се сви посебни услови коришћења уносе у уговор о експлоатацији објекта.
7.2.5. Посебни услови коришћења објекта корисника преносног система не смеју нарушити нормалан рад преносног система.
7.2.6. Посебни услови коришћења објекта једног корисника преносног система не смеју стварати додатне трошкове другим корисницима преносног система.

7.3. САДРЖИНА УГОВОРА О ЕКСПЛОАТАЦИЈИ ОБЈЕКАТА

7.3.1. Уговор о експлоатацији објекта, поред општих елемената уговора сагласно закону којим се уређују облигацији односи, садржи и:
- списак објеката на које се уговор односи;
- границе власништва на примарној, секундарној и осталој опреми;
- надлежне центре управљања ЕМС АД и корисника преносног система;
- списак овлашћеног особља за техничку сарадњу;
- размену техничке документације;
- техничке параметре који се односе на мерење електричне енергије;
- поверљиве податке на основу критеријума из Правила.

Уколико постоје, у овај уговор се могу укључити и посебни услови коришћења, односно нестандардне услуге оператора преносног система.

7.3.2. У Уговор о експлоатацији се по потреби могу унети утврђени обрачунски параметри на основу којих ће се проводити обрачун приступа преносном систему: преносни однос мерних трансформатора, подаци о конфигурацији бројила, коефицијент корекције, као и правила супституције недостајућих података.

7.3.3. Уговор о експлоатацији је бестеретни у делу који се односи на опште услове коришћења, односно стандардне услуге оператора преносног система.

7.4. ОВЛАШЋЕНО ОСОБЉЕ

7.4.1. У циљу ефикасног коришћења преносних и објеката корисника преносног система, неопходно је да ЕМС АД и корисници преносног система обострано овласте особље за међусобну сарадњу.

7.4.2. Ово особље потребно је именовати за следеће активности:
- планирање рада преносног система;
- управљање преносним системом;
- извођење радова у мрежи 400 kV, 220 kV, 110 kV;
- рад система заштита;
- рад комуникационог система;
- рад техничког система управљања;
- рад локалне опреме за примарну и секундарну регулацију;
- достављање техничких норми, поступака и документације.

7.4.3. За именовано особље потребно је дати податке који обухватају:
- име и презиме;
- назив предузећа;
- организациону јединицу предузећа;
- адресу организационе јединице предузећа;
- број телефона;
- број факса;
- број мобилног телефона;
- адресу електронске поште (E-mail).

84
Формат и рокове за размену наведених подataka одређује ЕМС АД.

7.4.4. У случају измена у подацима из одељка 7.4. ЕМС АД и корисник преносног система ће благовремено обавестити другу страну о изменама у својим списковима овлашћеног особља са припадајућим подацима.

7.5. ПРИСТУП ОБЈЕКТУ ОСОБЉА ЕМС АД

7.5.1. Корисник преносног система мора гарантовати приступ свом објекту у најкраће време, након најаве од ЕМС АД и под свим околностима, особљу ЕМС АД које је претходно именовано за следеће активности:

- проверу исправности и подешења заштитних уређаја на елементима прве, друге и треће групе Категоризације, као и елементима који су галвански прикључени на ове елементе;
- проверу исправности бројила и припадајуће мерне опреме;
- прикупљање снимака поремећаја и кварова, као и хронолошке регистрације догађаја са заштитних и управљачких уређаја;
- прикупљање информација са SCADA система објекта корисника преносног система;
- проверу исправности комуникационих уређаја који су релевантни за комуникацију у преносном систему;
- проверу исправности уређаја за прикупљање и размену података у реалном времену са техничким системом управљања ЕМС АД;
- проверу исправности и подешења примарних регулатора и локалне опреме за секундарну регулацију;
- проверу исправности и подешења напонских регулатора;
- обуставу испоруке електричне енергије;
- трајно искључење објекта са преносног система.

Корисник преносног система има право да присуствује наведеним активностима.

7.5.2. Право приступа пломбираним деловима мерне опреме имају искључиво представници ЕМС АД, осим када је угрожена сигурност лица и опреме. Владник, односно носилац права коришћења објекта у коме се налази мерна опрема је дужан да такве случајеве пријави ЕМС АД у року од 24 часа након ломљења пломбе.

7.5.3. Корисник преносног система мора гарантовати приступ објекту именованом особљу ЕМС АД у циљу спровођења најављених редовних или ванредних испитивања објекта корисника преносног система.

7.5.4. ЕМС АД именује наведено особље у овом одељку у оквиру захтева за испитивање.

7.6. ОБАВЕЗЕ КОРИСНИКА ПРЕНОСНОГ СИСТЕМА И ЕМС АД У ФУНКЦИОНАЛНОМ ИСПИТИВАЊУ

7.6.1. Функционална испитивања се спроводе на објектима корисника преносног система:

- обавезно при пуштању у погон објеката;
- по потреби, након значајних погонских догађаја или поремећаја у раду преносног система;
- у случајевима које предвиђају правила о раду интерконекције.

7.6.2. Функционална испитивања објекта корисника преносног система организују се и спроводе у присуству особља ЕМС АД и овог корисника.
7.6.3. Објекат корисника преносног система се функционално испитује по следећим поступцима:
- верификација техничких карактеристика наведених у одобрењу за прикључење, односно уговору о повезивању;
- регулација напона;
- примарна регулација;
- секундарна регулација;
- терцијарна регулација;
- могућност безнапонског покретања генератора;
- испад генератора на сопствену потрошњу;
- функционалност система заштите;
- функционалност комуникационог и локалног система управљања;
- функционалност система мерења електричне енергије;
- функционалност уређаја за стабилност;
- остало питања која су уређена Правилима.

7.6.4. Програм функционалног испитивања сачињава ЕМС АД самостално или на предлог корисника преносног система. Програм функционалног испитивања, као и услови за испуњење функционалног испитивања заснивају се на одредбама Правила.

7.6.5. ЕМС АД подноси кориснику преносног система детаљан програм функционалног испитивања са дефинисаним условима за испуњење овог испитивања најмање 3 радна дана пре термина одређеног за почетак испитивања. Тачан термин функционалног испитивања одрађује ЕМС АД након консултација са корисником преносног система.

7.6.6. ЕМС АД благовремено обавештава све кориснике преносног система којима би квалитет испоруке електричне енергије могао бити угрожен приликом извођења функционалних испитивања, о времену извођења испитивања и могућим последицама по њихове објекте.

7.6.7. Уколико објекат током функционалног испитивања не задовољи предвиђене услове, корисник преносног система је дужан да у року од 3 радна дана достави ЕМС АД детаљан извештај о функционалном испитивању који обухвата и:
- образложене због чега његов објекат није испуњио потребне услове;
- мере које ће предузети да би се отклонили узроци који су довели до неиспуњавања услова функционалног испитивања;
- рок за спровођење наведених мера.
ЕМС АД је обавезан да прати спровођење наведених мера.

7.6.8. Ако резултати функционалног испитивања показују да објекат угрожава друге кориснике преносног система, ЕМС АД је дужан да их о томе благовремено обавести и да предузме све располаживе мере како би се овај ризик у најскорије време отклонио.

7.7. ТЕХНИЧКИ НОРМАТИВИ, ПОСТУПЦИ И ДОКУМЕНТАЦИЈА

7.7.1. ЕМС АД у свом раду примењује техничке нормативе, поступке и документацију корисника преносног система.

7.7.2. Корисници преносног система одговарају за тачност норматива, поступака и документације, и дужни су да правовремено обавесте ЕМС АД о свим релевантним изменама. У противном, корисници преносног система сами сносе последице које су узроковане неблаговременим информисањем ЕМС АД.

7.7.3. Корисник преносног система дужан је да за постојеће објекте на захтев ЕМС АД обезбеди:
- једнополну шему објекта са основним подацима о уграђеној опреми;
- параметре неопходне за размену података у реалном времену;
- процедуре за случај нерасположивости свог центра управљања;
- остале нормативе, поступке и документацију релевантну за експлоатацију
објекта по оцени ЕМС АД;
у формату коју захтева ЕМС АД.

7.7.4. Корисник преносног система мора доставити ЕМС АД основне инструкције о
експлоатацији свог објекта (упутства која се односе на погон објекта, начин извршавања
манипулација у објекту и слично).

7.7.5. Уколико се такве инструкције не обезбеде, ЕМС АД не може бити одговоран за
последице које ће проистећи из недостатака ових информација.

7.7.6. ЕМС АД ће благовремено обавести корисника преносног система о актуелном
садржају и изменама у:
- Правилима;
- техничкој документацији преносних објеката од интереса за коришћење
објеката ovog корисника преносног система.

7.8. ОБУКА ОСОБЉА ЕМС АД И КОРИСНИКА ПРЕНОСНОГ
СИСТЕМА

7.8.1. ЕМС АД обучава своје и особља корисника преносног система на пољу
оперативних поступака, у складу са интерним актима предузећа и овим Правилима.

7.8.2. Програм, начин, обим, врсту и лица овлашћена за обуку особља оператора
преносног система доноси и утврђује ЕМС АД интерним актима предузећа.

7.8.3. На захтев корисника преносног система, ЕМС АД може извршити обуку особља
ових корисника, у складу са интерним актима предузећа и под условима и на начин који
се међусобно уреди.
ПОГЛАВЉЕ 8: МЕРЕЊЕ ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ

8.1. УВОД

8.1.1. Правила о мерењу електричне енергије одређују права и одговорности ЕМС АД и свих корисника преносног система, односно учесника на тржишту електричне енергије за потребе:
- мерења свих улаза електричне енергије у, односно излаzu из преносне мреже;
- очитања, прикупљања и регистрације података о извршеним мерењима са бројила електричне енергије;
- обраде и дистрибуције података потребних за обављање обрачуна на тржишту електричне енергије.

8.1.2. Правила прописују техничке услове за мерне трансформаторе, бројила и пратећу опрему у свим местима прикључења, односно повезиња, и дефинишу све потребне податке који се односе на одређено мерно место.

8.2. ОБЛАСТ ПРИМЕНЕ

8.2.1. Одредбе Правила примењују се на мерна места на свим местима примопредаје електричне енергије у преносним објектима ЕМС АД, односно објектима корисника преносног система за мерним местима, односно повезаних са преносним системом.

8.2.2. Одредбе Правила примењују се и на мерна места у пољима трансформатора 400/220 kV, 400/110 kV и 220/110 kV на страни нижег напона унутар преносне мреже.

8.2.3. Одредбе Правила примењују се и на мерна места сопствене потрошње на преносним објектима ЕМС АД, изузев оних за које је надлежан оператор дистрибутивног система.

8.2.4. Правила о мерењу електричне енергије односе се и на мерна места на средњем напону у дистрибутивној мрежи, ако је реч о далеководу преко кога се врши испорука електричне енергије суседном електроенергетском систему, као и у случају прикључених објеката за производњу електричне енергије од интереса за рад преносног система.

8.3. КОРИШЋЕЊЕ ПОДАТАКА ДОБИЈЕНИХ МЕРЕЊЕМ

8.3.1. Према условима Правила, подаци добијени мерењима представљају кључне подлоге за следеће пословне операције:
- биланс измерених протока електричне енергије на свим улазима у, односно излазима из преносне мреже у одговарајућем обрачунском периоду, спецификациран по мерним местима, напонским нивоима и у случају интерконекција са сведеним физичким протокима на границу;
- остварени дијаграм снаге, односно енергије која је ушла у преносну мрежу у одговарајућем обрачунском периоду, добијен као збир регистрованих дијаграма оптрећења (15-минутне средње снаге) свих измерених улаза у преносну мрежу, при чему је овај дијаграм расчлањен на дијаграм снаге, односно енергије производних капацитета и дијаграм свих улаза.
електричне енергије у преносну мрежу преко интерконективних далековода;
- остварени дијаграм снаге, односно енергије која је изашла из преносне мреже, добијен као збир регистрованих дијаграма (15-минутне средње снаге) свих измерених излаза из преносне мреже у одговарајућем обрачунском периоду при чему је овај дијаграм расчлањен на дијаграм оптерећења свих унутрашњих излаза (нето конзум) и дијаграм свих излаза електричне енергије из преносне мреже преко интерконктивних далековода;
- остварени дијаграм енергије, односно снаге губитака у преносној мрежи у одговарајућем обрачунском периоду;
- обраду и фактuracionе приступа преносном систему за сваког корисника преносног система;
- хармонизацију обрачунских података о разменама електричне енергије преко интерконктивних далековода;
- утврђивање укупне месечне количине енергије губитака у преносној мрежи у поступку планирања набавке електричне енергије за покривање губитака у преносној мрежи;
- обрачун балансног одступања учесника на тржишту електричне енергије;
- издавање гаранција порекла.

8.3.2. ЕМС АД доставља мерне податке корисника преносног система без његове сагласности и обавештавања:
- његовом снабдевачу, у случају уговора о потпуном снабдевању;
- балансно одговорној страни која је балансно одговорна за овог корисника;
- надлежним институцијама у сврху праћења и транспарентности тржишта електричне енергије у складу са прописима из области енергетике.

8.4. МЕРНИ ПОДАЦИ

8.4.1. Бројила на сваком мерном месту, мере и региструју следеће енергетске величине:
- преузету активну енергију (А+);
- предату активну енергију (А-);
- преузету реактивну енергију (R+);
- предату реактивну енергију (R-);
- максималну активну снагу у обрачунском периоду – смер преузимања (А+);
- максималну активну снагу у обрачунском периоду – смер предаје (А-).

8.4.2. Смер трансакције, преузимање (+), односно предаја (–), посматра се из перспективе корисника преносног система.

8.4.3. На сваком мерном месту се региструје дијаграм оптерећења у форми средње 15-минутне активне снаге, односно реактивне снаге за сваки интервал унутар обрачунског периода.

8.4.4. Уз сваки мерни податак се придружије и временска значка (минут, сат, дан, година) и они се чувају у регистрима бројила.

8.4.5. Дневни период почиње у 00:00 сати по важећем средињевропском времену (CET) за мерна места на интерконктивним далеководовима и завршава се у 24:00 сата, док за сва остала мерна места дневни период почиње у 07:00 сати рачунато по текућем националном времену и завршава се следећег дана у 07:00 сати.
8.4.6. Обрачунски период за сва мерна места интерконекције је календарски месец са очитањем обрачунских и контролних бројила првог дана у месецу у 00:00 сати и последњег дана у месецу у 24:00 сати. Обрачунски период за сва остала мерна места у преносној мрежи је период који почиње очитањем обрачунских и контролних бројила првог дана у месецу у 07:00 сати и завршава се очитањем бројила првог дана у следећем месецу у 07:00 сати.

8.4.7. Прикупљени подаци о предатој, односно преузетој електричној енергији за обрачунски период из регистара енергије бројила и подаци о 15-минутним дијаграмима оптерећења предате, односно преузете електричне енергије су основни обрачунски мерни подаци за обрачуне поменуте у одељку 8.3. Правила.

8.4.8. У случају спорења даљински очитаних података, као меродавне вредности сматраће се подаци из одговарајућих регистара бројила очитаних локално преко оптичког порта бројила.

8.4.9. На сваком мерном месту, потребно је да се омогући очитање следећих података на дисплеју бројила:

- текућег кумулативног стања регистара активне енергије у Wh (сеокундарна конфигурација) или kWh (примарна конфигурација) и реактивне енергије у varh или kvarh за сваки конфигуриски смер протока електричне енергије;
- максималне средње 15-минутне активне и реактивне снаге за сваки конфигуриски смер протока енергије у W или kW односно var или kvar, како за текући обрачунски период тако и за претходни обрачунски период;
- текућег времена и датумана бројилу;
- квадранта за тренутне смерове активних и реактивних снага;
- присутности мерних напона;
- одговарајућег OBIS кода мерне величине;
- фаталног аларма;
- тренутно активног тарифног става (ако се енергија по тарифним ставовима региструје непосредно на бројилу).

8.5. ПОЛОЖАЈ МЕРНОГ МЕСТА

8.5.1. Ако постоје сви технички услови, мерно место се налази на напонском нивоу на коме се налази место примопредаја електричне енергије.

8.5.2. Ако се место примопредаје и мерно место не налазе на истом напонском нивоу, или ако се налазе на истом напонском нивоу, али су толико удаљена да се губи електричне енергије не могу занемарити, неопходно је извршити корекцију мерних подataka за вредност губитака електричне енергије од места примопредаје до мерног места (свођење на место примопредаје). Корекција се врши у току и саставни је део обрачунског процеса.

8.5.3. Коefицијент корекције утврђује ЕМС АД на основу техничких карактеристика опреме, те прорачуна губитака између места примопредаје и мерног места за просечне услове експлоатације објекта. Коefицијент корекције се утврђује:

- решењем којим се уређује прикључење објекта купца или произвођача;
- уговором о повезивању дистрибутивног објекта са преносним системом;
- Уговором о експлоатацији објекта, за објекте купца или произвођача, када се коefицијент мења током експлоатације објекта;
- уговором о приступу преносном систему.
Начин и услови промене коефицијента корекције уређаја ЕМС АД и корисник преносног система.

8.6. ДЕФИНИСАЊЕ МЕРНЕ ОПРЕМЕ

8.6.1. МЕРНА ОПРЕМА НА МЕРНОМ МЕСТУ

8.6.1.1. На сваком мерном месту мерна опрема мора обухватити:
- мерне трансформаторе;
- бројила електричне ендергије;
- мерна и помоћна електрична кола;
- комуникационе и помоћне уређаје;
- мерно-прикључну кутију и мерни орман.

8.6.2. МЕРНИ ТРАНСФОРМАТОРИ

8.6.2.1. Увод

8.6.2.1.1. На сваком мерном месту, а за потребе обрачунског или контролног мерења електричне енергије, морају се поставити напонски мерни трансформатори (НМТ) и струјни мерни трансформатори (СМТ) који задовољавају следеће стандарде: IEC 60044-1, IEC 60044-2, IEC 60044-3 и IEC 60044-5.

8.6.2.2. Класа тачности

8.6.2.2.1. Минимална класа тачности за наведене мерне трансформаторе зависи од врсте мерног места, и наведена је у табели 8.1:

<table>
<thead>
<tr>
<th>Мерно место</th>
<th>Класа тачности:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>СМТ</td>
</tr>
<tr>
<td>интерконективни далековод</td>
<td>0,2 + 0,2 (*)</td>
</tr>
<tr>
<td>производња електричне енергије</td>
<td></td>
</tr>
<tr>
<td>- мерна места на 220 kV и 400 kV</td>
<td>0,2 + 0,2 (*)</td>
</tr>
<tr>
<td>- остала мерна места</td>
<td>0,2</td>
</tr>
<tr>
<td>дистрибутивни објекат</td>
<td>0,2</td>
</tr>
<tr>
<td>купац (одобрена снага преко1600 kW)</td>
<td>0,2</td>
</tr>
<tr>
<td>купац (одобрена снага до 1600 kW)</td>
<td>0,5</td>
</tr>
<tr>
<td>споставена потрошња електрана</td>
<td>0,5</td>
</tr>
</tbody>
</table>

(*) два мерна језгра

8.6.2.3. СТРУЈИ МЕРНИ ТРАНСФОРМАТОРИ

8.6.2.3.1. За трајно дозвољену термичку струју струјног мерног трансформатора се по правилу усваја вредност од 120% његове примарне називне струје.

8.6.2.3.2. На мерном месту се угађају примарно превезиви струјни мерни трансформатори. ЕМС АД одређује односе на који се повезују примарне стране струјних мерних трансформатора у циљу постигања максималне тачности мерења. Корисници преносног система дужни су да у својим објектима спроведу налог ЕМС АД по овом питању, који се доставља званичним дописом.

8.6.2.3.3. Мерно језгро струјног мерног трансформатора је искључиво резервисано за галванско прикључење бројила. Галванско прикључење било ког додатног уређаја, односно трошила, ЕМС АД може одобрити искључиво за потребе повећања оптерећења
како би мерни трансформатор радио у мерном опсегу у којем је дефинисана његова грешка, односно класа тачности.

8.6.2.3.4. Галванско прикључне стезаљке на секундару струјних мерних трансформатора морају да буду заштићене пломбом ЕМС АД како би се епичео неовлашћен приступ. Свака интервенција на вези мерни трансформатор - бројило мора бити претходно одобрена од стране ЕМС АД, документована, а извештај о интервенцији достављен ЕМС АД.

8.6.2.3.5. Код мерних места на интерконективним далеководима и мерних места производње електричне енергије на напонским нивоима 220 kV и 400 kV, струјни мерни трансформатори морају да буду опремљени са два мерна језгра истих карактеристика при чему је:
- прво мерно језгро је намењено искључиво за галванско прикључење обрачунског бројила (сваки додатни галвански прикључак ЕМС АД може одобрити искључиво у сврху повећања секундарног оптерећења како би струјни мерни трансформатор радио у најповољнијем мерном опсегу);
- друго мерно језгро служи за галванско прикључење контролног бројила (на ово мерно језгро ЕМС АД може одобрити галванско прикључење и других уређаја под условом да укупно секундарно оптерећење не прелази називно оптерећење).

На мерним местима свих осталих напонских нивоа, прво мерно језгро струјног мерног трансформатора је намењено искључиво за галванско прикључење образуноског бројила и по потреби контролног бројила. Сваки додатни галвански прикључак ЕМС АД може да одобри путем званичног дописа, искључиво у сврху повећања секундарног оптерећења, како би струјни мерни трансформатор радио у најповољнијем мерном опсегу, у којем је дефинисана његова грешка.

8.6.2.3.6. Карактеристике додатног оптерећења утврђује ЕМС АД. Коришћење додатног терета потребно је свести на најмању могућу меру и искључиво код струјног мерног трансформатора на постојећим мерним местима. Код нових мерних места по правилу не би требало користити додатно оптерећење, већ се мора правилно изабрати називна привидна снага мерног језгра струјног мерног трансформатора.

8.6.2.3.7. Прикључни контакти додатног оптерећења морају да буду тако изведени да их је могуће заштићити пломбом ЕМС АД и пломбом корисника преносног система.

8.6.2.3.8. Укупно оптерећење сваког секундарног намотаја струјног мерног трансформатора, укључујући и прикључне везе, мора да се креће од 25% до 100% укупног називног оптерећења тог намотаја.

8.6.2.3.9. Попречни пресек проводника струјних мерних кола од секундарних прикључних стезаљки струјног мерног трансформатора до мерно-прикључне кутије мора износити најмање 2,5 mm² за дужине вода по фази мање од 100 m, односно 4 mm² за дужине вода по фази веће од 100 m. Мерни струјни водови по фазама треба да буду изведени са трајним ознакама на оба краја.

8.6.2.3.10. Струјна мерна кола бројила или групе бројила електричне енергије за свако место мерења треба да се галвански прикључе на секундарни намотај сваке фазе преко одговарајућег струјног мерног трансформатора преко засебног доводног и одводног проводника.

8.6.2.3.11. Прикључне везе мерних и помоћних електричних кола морају да буду изведене тако да имају одговарајућу заштиту од механичких и електричних утицаја.
8.6.2.4. Напонски мерни трансформатори

8.6.2.4.1. На мерни намотај напонског мерног трансформатора се галвански прикључују мерна напонска кола бројила електричне енергије, као и напонска кола осталих мерних и заштитних уређаја. Мерна кола за бројила електричне енергије, ради селективности, морају бити изведена преко посебног напонског аутомата са обавезним сигналним контактом, који је сменштен у разводном орману напонског трансформатора.

8.6.2.4.2. Укупно оптерећење мерног намотаја напонског мерног трансформатора, укључујући и мерна напонска кола бројила електричне енергије, не сме прети називну привидну снагу напонског мерног трансформатора.

8.6.2.4.3. Посебна секундарна мерна кола напонског мерног трансформатора само за бројила електричне енергије морају бити заштићена посебним напонским аутоматима и сигналним контактом који се морају уградити што је могуће ближе секундарним прикључним стезалкама напонског мерног трансформатора (у командном орману у самом пољу овог трансформатора). Такође се у секундарним мерним колима напонског мерног трансформатора мора уградити и сигнализација присутности сваког мерног напона. Сигнал испада напонског аутомата и сигнали присутности мерних напона морају бити уведен у јединствени систем сигнализације објекта где ће сваки догађај бити регистрован са временском начином. У објектима у којима није могуће извести посебан сигнал аларма о испаду напонског аутомата, као идентификатор овог догађаја ће се користити подаци из регистра догађаја у самом бројилу. Мерни напонски водови по фазама треба да буду изведени у различитим бојама и обележени трајним ознакама на оба краја.

8.6.2.4.4. Дозвољени релативни пад напона у посебним секундарним мерним напонским колима од напонског мерног трансформатора до бројила електричне енергије мора бити мањи или једнак 0,1% секундарног називног напона напонског мерног трансформатора. Попречни пресек проводника мерних напонских кола мора бити изабран у односу на наведени дозвољени релативни пад напона.

8.6.2.4.5. Укупно оптерећење на сваком секундарном намотају напонског мерног трансформатора, укључујући и оптерећење прикључних проводника, мора бити у распону од 25% до 100% укупног називног оптерећења секундарног намотаја. Ако је напонски мерни трансформатор оптерећен испод 25% његовог називног оптерећења у његово секундарно коло мора се укључити додатни терет ради одржавања захтеване класе тачности обрачунског, односно контролног мерења.

8.6.2.4.6. Прикључне везе мерних и помоћних електричних кола морају да буду изведене тако да имају одговарајућу заштиту од механичких и електричних утицаја.

8.6.3. БРОЈИЛА

8.6.3.1. Увод

8.6.3.1.1. Свако бројило мора бити галвански прикључено на мерне трансформаторе чије су карактеристике дефинисане у одељку 8.6.2. Галванско место прикључења и раздвајања бројила од мерних електричних кола је мерно-прикључна кутија са 20 конектора.

8.6.3.1.2. На свим мерним местима на интерконективним далеководима на напонским нивоима већим или једнаким 110 kV, као и на мерним местима производње електричне енергије, поред обрачунског бројила обавезна је и уградња контролног бројила електричне енергије истих техничких карактеристика и исте класе тачности. За обрачун се користе подаци са обрачунског бројила.
8.6.3.1.3. Бројила активне и реактивне електричне енергије морају да буду у складу са националним метролошким прописима, прописима који уређују услове испоруке електричне енергије и следећим IEC стандардима:
- IEC 62053-22 – Статичка бројила за активну енергију (класе тачности 0,2S и 0,5S);
- IEC 62053-23 – Статичка бројила за реактивну енергију (класе тачности 2 и 3).

8.6.3.1.4. На поклопац прикључних стезаљки бројила и на тастер за ресетовање бројила стављају се пломбе ЕМС АД. На свим местима интерконекције на поклопац прикључних стезаљки бројила стављају се пломбе ЕМС АД.

8.6.3.2. Класа тачности
8.6.3.2.1. Минимална захтевана класа тачности за бројила из одељка 8.6.3.1. зависи од врсте мерног места и наведена је у табели 8.2.

Табела 8.2.

<table>
<thead>
<tr>
<th>Мерно место</th>
<th>Бројило активне енергије</th>
<th>Бројило реактивне енергије</th>
</tr>
</thead>
<tbody>
<tr>
<td>интерконекктивни далековод</td>
<td>0,2S + 0,2S (*)</td>
<td>2 + 2 (*)</td>
</tr>
<tr>
<td>производња електричне енергије</td>
<td>0,2S + 0,2S (*)</td>
<td>2 + 2 (*)</td>
</tr>
<tr>
<td>дистрибутивни објекат</td>
<td>0,2S</td>
<td>2</td>
</tr>
<tr>
<td>купац (одобрена снага преко 1600 kW)</td>
<td>0,2S</td>
<td>2</td>
</tr>
<tr>
<td>купац (одобрена снага до 1600 kW)</td>
<td>0,5S</td>
<td>3</td>
</tr>
</tbody>
</table>

(*) Обрачунско бројило и контролно бројило

8.6.3.3. Помоћно напајање бројила
8.6.3.3.1. Сопствено напајање потребно за рад бројила обезбеђује се из помоћног извора напајања и напонских мерних кола са прикључних стезаљки бројила. Бројило се по правилу напаја преко мерних напонских кола. Помоћни извор напајања је алтернатива напајању преко мерних напонских кола. Мора се обезбедити галванско раздвајање ова два извора сопственог напајања бројила.

8.6.3.3.2. У случају престанка рада оба извора напајања, интерна батерија бројила мора да обезбеди напајање временске базе унутар уређаја најмање три наредна месеца.

8.6.3.4. Регистровање података
8.6.3.4.1. У бројилу морају се чувати замрзнута стања свих конфигурисаних регистара за активну и реактивну енергију и максималну снагу најмање за дванаест месеци уназад, после чега се врши циклични упис: тринадест месец уместо првог месеца итд. Мерни подаци који се чувају у меморији морају бити сачувани и у случајевима кад бројило није напајано.

8.6.3.4.2. Бројила морају да буду опремљена оптичким инфрацрвеним комуникационим портом у складу са протоколом IEC 62056-2/1 за локално очитавање свих регистара бројила.

8.6.4. УРЕЂАЈИ ЗА НАДЗОР
8.6.4.1. На командној табли мора бити приказан сигнал збирног алерма бројила који обухвата појединачне алерме као што су:
- грешка у раду бројила;
- губитак мерног напона;
- губитак помоћног напајања.
Сваки аларм бројила се посебно бележи са временом и датумом настанка у регистру бројила. Ове податке мора бити могуће очитати на лицу места (локално, на објекту) или даљински.

8.6.4.2. Збирни аларм се групише у локалну сигналну петљу и шаље у надлежни центар ЕМС АД.

8.6.5. ВРЕМЕНСКА БАЗА У БРОЈИЛИМА

8.6.5.1. Бројило мора бити опремљено интерном временском базом. Ови интерни сатови се подешавају према локалном важећем времену. Временска база мора да поседује могућност аутоматске сезонске корекције времена која се примењује на подручју Републике Србије.

8.6.5.2. Када не постоји сигнал спољне синхронизације, интерни сат не сме да одступа за више од 15 секунди током једног месеца.

8.6.5.3. Синхронизација интерног сата се врши било путем даљинске комуникације према бројилу путем дистрибуције сигнала са еталона временске базе ЕМС АД, или путем дистрибуције сигнала локалног уређаја за дистрибуцију тачног времена.

8.6.5.4. Уређај мора да поседује подесив синхронизациони прозор. Основно подешавање синхронизационог прозора је ± 3 минута.

8.6.5.5. Мерна места могу да буду опремљена и GPS пријемником који омогућава локалну синхронизацију интерних временских база бројила. ЕМС АД одлучује да ли постоји потреба за уградњом локалног GPS пријемника и обезбеђује GPS пријемник у случају потребе.

8.6.5.6. ЕМС АД врши даљинску синхронизацију временске базе на бројилу, која има приоритет у односу на локалну синхронизацију.

8.6.6. КОМУНИКАЦИЈА

8.6.6.1. Комуникациони протокол

8.6.6.1.1. Све вредности које региструју бројила очитавају се:
- локално преко оптичког порта према IEC 62056-21;

8.6.6.1.2. Даљинска комуникација бројила или низа бројила са системом SRAAMD реализује се преко комуникационих портова бројила RS 485.

8.6.6.1.3. У случају бројила која поседују засебан комуникациони порт RS 232, приступ овом порту ће се омогућити кориснику ради обављања истовременог приступа подацима са бројила (искључиво опција очитавања свих регистара бројила) у периодима када комуникација обавља ЕМС АД. Истовремени приступ ће бити омогућен само ако постоји засебни комуникациони уређај и засебни телефонски број преко кога корисник обавља комуникацију за своје потребе.

8.6.6.2. Комуникациони медијум

8.6.6.2.1. За потребе даљинског очитавања бројила мора бити обезбеђен један од следећих комуникационих медијума:
- јавна телефонска мрежа;
- GSM/GPRS мрежа мобилне телефоније;

95
8.6.6.2.2. Једна комуникационо линија може да опслужује неколико бројила, а такође може да се користи за неколико мерних места, уколико су бројила груписана приближно на истом месту, а различито адресирана, при чему се мора користити искључиво комуникациони порт RS 485.

8.6.6.2.3. Комуникациони медијум мора обезбедити сталну доступност бројила за потребе даљинског очитавања.

8.6.6.3. Комуникациони интерфејс

8.6.6.3.1. Да би могли да буду повезани на комуникациони медијум, бројила садрже комуникационе интерфејсе који су компатибилни са уређајима за подршку, као што су модеми, комуникациони разделици, мултиплексери, опрема на крајевима оптичких каблова, итд.

8.6.6.3.2. Комуникационе јединице могу бити интерне (уграђене у бројило) и екстерне, као посебни комуникациони уређаји.

8.6.6.3.3. Код екстерних комуникационих уређаја, веза са бројилима реализује се по правилу преко порта RS 485, а у специфичним случајевима преко порта RS 232.

8.6.7. ИНТЕГРИСАЊЕ И ОКРУЖЕЊЕ

8.6.7.1. Бројила, уређаји за надзор и комуникацију морају да буду интегрисани у јединствени кориснички систем (за једно или више мерних места) у циљу:
- заштите компоненти путем кућишта и пломби који онемогућавају неовлашћени приступ;
- контроле температуре у складу са окружењем у којем опрема функционише;
- заштите од влаге, прашине, удара и вибрација из окружења;
- остваривања електромагнетне компатибилности са околном опремом;
- омогућавања испитивања сваког бројила и комуникационог интерфејса без ремења размене електричне енергије са преносном мрежом.

8.6.7.2. За сва мерна места у једином објекту, мора да се обезбеди додатно помоћно напајање преко спољног једнофазног извора напајања 57-230 VAC, односно 48-240 VDC; 50 VA ради напајања бројила и комуникационих интерфејса, спојних веза између компоненти, укључујући све потребне заштитне уређаје мерних и помоћних електричких кола.

8.6.7.3. Помоћни спољни извор напајања бројила електричне енергије и свих помоћних уређаја мора бити заштићен аутоматским осигурачијама од 2 А са функцијом прекидача (двоополно прекидање).

8.6.7.4. Бројила, уређаји за надзор и комуникацију за једно или више мерних места се смештају у јединствени мерни орман. Тип, спецификацију прибора и монтажну шему мерног орmana одређује ЕМС АД.

8.7. ПУШТАЊЕ У РАД МЕРНЕ ОПРЕМЕ

8.7.1. Приликом пуштања у рад, уградње или замене мерне опреме ЕМС АД обавља следеће активности:
- преглед карактеристика дијаграма оптерећења;
- верификацију тестова усклађености које је обавио испоручилац;
- конфигурацију бројила и регистара података;
- проверу класе тачности бројиља;
- контролу исправног галванског прикључења (сви мерни и комуникационих кола) бројиља;
- контролу расположивости локалног и даљинског измеривања уписаних вредности са бројиља;
- контролу исправности пломби на мерној опреми;
- евидентирање идентификација мерне опреме.

8.7.2. Након пуштања у рад, не smeјu се вршити неовлашћене измене на мерној опреми без писменог налога ЕМС АД. Сва ка неовлашћена измена на опреми повлачи поновну проверу и пуштање у рад опреме по свим наведеним функцијама у тачки 8.7.1. на трошак стране која је спровела неовлашћену измену.

8.8. КОНФИГУРАЦИЈА МЕРНЕ ОПРЕМЕ

8.8.1. Под конфи гурацијом мерне опреме подразумевају се:
- избор и дефинисање преносних односа мерних трансформатора уграђених на мерном месту;
- избор квадранта у којем ће се вршити мерење и регистровање електричне енергије у зависности од могућег смера електричне енергије;
- конфигурација бројила на мерном месту у складу са потребама обрачуна приступа преносном систему и других обрачуна електричне енергије.

8.8.2. Преносне односе мерних трансформатора дефинише ЕМС АД према напонском нивоу и месту прикључења, односно повезивања и преносном капацитету опреме.

8.8.3. Под конфи гурацијом бројила подразумева се одређивање унутрашњих параметара бројиља које мора бити у складу са техничким карактеристикама мерног места и захтевима постављеним од стране ЕМС АД. Конфи гурација бројиља може бити примарна или секундарна, већ према томе да ли бројило приказује примарне или секундарне вредности обрачунских величина. Конфи гурација бројиља мора имати своју једнозначну ознаку (име).

8.8.4. Попис свих постављених преносних односа мерних трансформатора и конфи гурација бројиља са свих мерних места уноси се у одговарајући документ, сагласно договору ЕМС АД и корисника преносног система.

8.8.5. ЕМС АД дефинише и реализује параметре конфи гурације бројиља за свако мерно место који су неопходни за њихов рад, регистре података, надзор уређаја и комуникационих веза, у циљу обезбеђења:
- мерења у складу са захтеваним класом тачности;
- евидентирања измерених вредности у форми 15-минутних временских интервалова;
- расположивости локалне и даљинске комуникације према свим овлашћеним странама које имају право приступа мерним подацима.

8.8.6. Само је ЕМС АД овлашћен да врши измене конфи гурације мерне опреме.

8.8.7. ЕМС АД је одговоран за одржавање односно ажурирање конфи гурације мерне опреме тако да она увек буде компатибилна са карактеристикама места прикључења, односно повезивања.

8.8.8. ЕМС АД писмено обавештава корисника преносног система о променама конфи гурације бројиља.
8.8.9. Обрачунске константе за електричну енергију и снагу морају бити на одговарајући начин унете у апликације за обрачун и могу се мењати само преко посебног писменог налога који издаје ЕМС АД на основу записника о промени обрачунске константе сачињеног између овлашћених представника ЕМС АД и корисника преносног система.

8.8.10. Радну конфигурацију бројила ЕМС АД ће доставити кориснику преносног система као документ на његов захтев.

8.8.11. ЕМС АД свидетиља и чува у архиви податке који оправдавају радну конфигурацију бројила.

8.9. ИСПИТИВАЊЕ И КОНТРОЛА МЕРНЕ ОПРЕМЕ

8.9.1. ИСПИТИВАЊЕ МЕРНЕ ОПРЕМЕ

8.9.1.1. ЕМС АД испитује исправност и тачност мерне опреме на сваком мерном месту приликом пуштања у рад, као и у току рада, при чему се бројила испитују најмање једном годишње.

8.9.1.2. У поступку испитивања исправности и тачности мерне опреме, врше се следеће активности:
- провера исправности и неоштетености свих жигова на мерној опреми;
- провера преносног односа струјних и напонских мерних трансформатора;
- провера свих веза од мерних трансформатора до бројила;
- провера исправности рада бројила укључујући и еталонско испитивање;
- провера статуса и конфигурације бројила;
- провера приkaza на дисплеју бројила;
- провера функционисања излазних контактака бројила;
- провера локалне и даљинске комуникације са бројилом.

8.9.1.3. У случају када резултати испитивања указују да једна или више компоненти мерне опреме више не одговара задатим техничким условима из акта о прикључењу, односно повезивању, власник, односно носилац права коришћења такве компоненте, је дужан да замени неисправну компоненту у најкраћем могућем року по добијању резултата испитивања. У случају квара опреме за коју постоји редунданса, овај рок може бити највише 30 дана.

8.9.1.4. Након замене старе, односно уградње нове мерне опреме, ЕМС АД испитује на лицу места новоутрађену опрему.

8.9.1.5. У случају да ЕМС АД или корисник преносног система посумња у исправност рада мерне опреме, ЕМС АД је дужан да организује испитивање ове опреме у најкраћем могућем року.

8.9.2. КОНТРОЛА БРОЈИЛА

8.9.2.1. ЕМС АД врши kontrolu утрапљених бројила најмање једном годишње.

8.9.2.2. У циљу контроле бројила ЕМС АД спроводи следеће активности:
- визуелни преглед исправног рада бројила и приказа мерних података на регистрима бројила;
- визуелни преглед исправности свих жигова на бројилу;
- поређење вредности енергије registrovanе на обрачунском бројилу са вредностима енергије registroваним на контролном бројилу (уколико је утрапљено на одређеном мерном месту) - ово одступање мора бити у
граничама дефинисаним класом тачности обрачунског и контролног бројила;
- аквизицију сигнала са уређаја за надзор;
- анализу сигнала и аларма који су забележени у регистрима догађаја бројила;
- анализу вредности фазних напона које се доводе на бројило на мерном месту;
- анализу фазорског дијаграма тренутних напона и струја и њихов исправни редослед на мерном месту.

8.9.2.3. Власник, односно носилац права коришћења објекта, обезбеђује контролу исправности рада бројила у објекту путем надзора и очитавања сигнала на лицу места. У случају појаве аларма или сигнала који обавештава о одступању од исправног рада бројила, корисник преносног система без одлагања обавештава о томе ЕМС АД.

8.9.3. КОНТРОЛА МЕРНИХ ТРАНСФОРМАТОРА

8.9.3.1. ЕМС АД и власник мерних трансформатора, врше контролу утврђених мерних трансформатора једном у две године или када се за то покаже потреба и када постоје предуслови да се ова контрола успешно обави (приликом ремонта у објекту или искључења мерног извода).

8.9.3.2. У циљу контроле мерних трансформатора, спроводе се следеће активности:
- визуелни преглед мерних трансформатора;
- утврђује се исправност свих жигова на мерним трансформаторима;
- утврђује се усаглашеност превезаности примарне стране струјног мерног трансформатора са документацијом у објекту и оном коју поседује ЕМС АД;
- мерење преносног односа мерног трансформатора;
- мерење секундарног оптерећења мерног трансформатора;
- врши се аквизиција сигнала са уређаја за надзор;
- анализа сигнала и аларма који су забележени у регистраторима догађаја на објекту;
- анализа вредности фазних напона и струја.

8.9.3.3. Власник, односно носилац права коришћења мерних трансформатора обезбеђује контролу исправности рада мерних трансформатора на објекту путем надзора и очитавања сигнала на лицу места. У случају појаве аларма или сигнала који обавештава о одступању од исправног рада мерних трансформатора, корисник преносног система без одлагања обавештава о томе ЕМС АД. Власник мерног трансформатора и ЕМС АД заједнички анализирају догађај и одређују да ли је потребно извршити замену мерног трансформатора.

8.9.3.4. У случају да је мерни трансформатор дошао у неисправно стање, власник, односно носилац права коришћења мерног трансформатора је носилац посла замене ове опреме. Неисправни мерни трансформатор се мора заменити у договору са ЕМС АД, у најкраћем могућем року, са мерним трансформатором истог или сличног типа, на основу стандардних рокова испоруке ове врсте опреме које даје испоручилац, и на основу могућности у преносном систему да се ова замена изврши.
8.10. ПРОЦЕДУРА ЗА МЕРЕЊЕ

8.10.1. БАЗА МЕРНИХ ПОДАТАКА

8.10.1.1. ЕМС АД води базу подataka о бројилима, као и о измереним величинама са ових уређаја, а на које се односе одредбе Правила.

8.10.1.2. База подataka садржи идентификацију мерне опреме у складу са јединственим идентификационим EIC Z кодом на основу које је могуће утврдити следеће:
- локацију прикљученог, односно повезаног објекта;
- прикључни, односно повезан извод;
- податке о кориснику преносног система;
- податке о тренутном снабдевачу, као и о ранијим снабдевачима корисника преносног система;
- податке о балансно одговорној страни;
- обрасциску константу сваког мерног места корисника;
- састав мерне опреме, конфигурацију и резултате предузетих радова на одржавању;
- идентификацију и вредношћу које су измерене и записане о прикључном, односно повезном изводу;
- права приступа подацима и предузете мере заштите од неовлашћеног приступа.

8.10.1.3. Непходно је да у сваком тренутку и у свим условима буде познат извор сваког мерног података који се користи у складу са сврхом и захтевима Правила.

8.10.1.4. Дозвољен је период од највише две недеље од датума пуштања у рад бројила или измена на мерној опреми до ажурирања базе података.

8.10.1.5. База мерних података мора да садржи изворне вредности прикупљене даљински или локално са бројила, корекције за податке који се коригују са губицима електричне енергије у преносу и трансформацији и супституисане вредности у складу са наведеним правилима. База података мора да омогући:
- идентификацију мерне опреме која одговара свакој величини и вредности добијеноj са мерне опреме, у складу са њеном шифром у бази података;
- одређивање типа мереног места (kW, kWh, kvar, kvarh) за дату вредност;
- јасну и недовосмислену идентификацију изворне вредности, те кориговане вредности губитака и супституисане вредности;
- повезу са изворном вредношћу за сваку кориговану и супституисану вредност;
- временску значаку о датуму аквизиције изворних вредности и датуму супституције података.

8.10.1.6. ЕМС АД ставља на располагање податке о измереним и израчунатим вредностима из базе мерних података корисницима преносног система за објекте преко којих им се испоручује, односно преузима електрична енергија, као и њиховим снабдевачима.

8.10.1.7. Корисници преносног система и њихови снабдевачи приступају мерним и обрасциским подацима преко интернет платформе која приказује све податке добијене даљинским саобраћајем бројила као и све резултате обрачунана корисника. Корисници преко ове платформе могу погледати и преузети само оне податке који се односе на њихово коришћење преносног система, док снабдевачи могу преузети само оне податке везане за мерна места корисника које снабдевају.
8.10.1.8. База мерних података садржи све потребне податке који се односе на рад мерне опреме за последњих 5 година.
8.10.1.9. Подаци старији од 5 година се чувају у архиви базе података. Архивирање базе мерних података обавља се редовно у циљу чувања података, а дужина чувања података у архиви износи десет година.

8.10.2. ДАЉИНСКА АКВИЗИЦИЈА ПОДАТАКА
8.10.2.1. ЕМС АД је одговоран за даљинску акvizицију мерних података које су локално забележила бројила како би се попунила база података.
8.10.2.2. Овакво даљинско прикупљање података изводи се у складу са комуникационим протоколима наведеним у одељку 8.6.6. Правила, путем комуникационог медијума и комуникационог интерфејса са мерном опремом.
8.10.2.3. Уколико дође до дужег прекида комуникације, ЕМС АД спроводи локално очитавање бројила и пребације очитане податке директно у базу података. Овај поступак се мора обавити у року који омогућава да сви неопходни мерни подаци буду располошени приликом врење обрачун.
8.10.2.4. ЕМС АД редовно очитава мерне податке у сваком објекту у одређеним временским размацима. Период очитавања мора да буде у складу са потребама обрачун преступа преносном систему, у складу са потребама обрачуна балансеног одступања, као и у складу са преузетим уговорним обавезама, уз уважавање време на неоходим за обављање процеса валидације и супституције података.
8.10.2.5. Временски интервал очитавања је један дан. Уколико су услови на комуникационим линијама такви да не дозвољавају прикупљање мерних података, ЕМС АД ће преиспитати периоде аквизиције у циљу увођења чешћег очитавања бројила.

8.10.3. ВАЛИДАЦИЈА ПОДАТАКА
8.10.3.1. ЕМС АД проверава и потврђује веродостојност прикупљених мерних података, врши валидацију података, а пре уношења мерних података у базу података.
8.10.3.2. Сврха поступка провере валидности података добијених мерењима је:
- да се провери има ли недостајућих података или непотпуних информација након извршеног очитавања бројила;
- да се провери да ли је на мерној опреми у току провера, поправка и да ли се вршила нека локална интервенција у периоду који је вршено очитавање;
- да се утврди да ли уређај за надзор сигнализира одсуство помоћног напајања у дане очитавања података;
- да се утврди да није било одступања локалног времена на бројилу у односу на референтно време током читавог обрачунског периода;
- да се утврди да ли су сви прикупљени подаци реални и у складу са могућим оптерећењима на конкретном мерном месту.
8.10.3.3. Приликом валидације се упоређују мерни подаци добијени са обрачунских и контролних бројила, а потом се врши упоређивање енергије добијене на основу разлике стања регистара енергије са енергијом добијеном интеграцијом дијаграма оптерећења. Такође, добијени подаци се упоређују са подацима из претходног обрачунског периода, као и са подацима за исти обрачунски период у претходним годинама.
8.10.3.4. Дозвољена разлика између вредности регистрованих преко обрачунског и контролног бројила мора бити унутар граница декларисане тачности бројила.
8.10.3.5. Дозвољена разлика између вредности електричне енергије обрачунате на основу дијаграма оптерећења и енергије израчунате на основу почетних и крајњих стања регистара бројила мора бити мања од 0,1%.

8.10.4. СУПСТИТУЦИЈА ПОДАТКА

8.10.4.1. У случају невалидности података или утврђивања грешке мерења, ЕМС АД обавља супституцију невалидних мерних података, односно недостајућих мерних података.

8.10.4.2. ЕМС АД супституше невалидне, односно, недостајуће мерне податке уважавајући следећи редослед:
- подацима које је регистровало контролно бројило, уколико је овакво бројило саставни део мерне опреме, и ако је извршена провера тачности података;
- альтернативно, подацима добијеним преко SCADA система ЕМС АД ако су за такво мерно место располођиви подаци;
- проценом на основу сличног претходног периода размене електричне енергије преко преносне мреже (правила о избору таквих периода утврђују се међусобним уговором између ЕМС АД и корисника преносног система).

8.10.4.3. У случајевима утврђеним прописом којим се уређују услови испоруке електричне енергије, супституција мерних података врши се у складу са тим прописом.

8.10.4.4. ЕМС АД мора документовати супституцију мерних података за потребе интерне ревизије и контроле обрачуна.

8.10.4.5. Уколико се током испитивања, редовне или ванредне контроле мерне опреме, утврди да је мерење, односно регистровање мерних података било нетачно, мерни подаци ће се заменити у бази података у складу са правилима за супституцију из овог одељка и то за период:
- од дана настанка квара, ако се време настанка квара може поуздано утврдити;
- који се утврди на основу анализе располођивих података.

8.10.4.6. Ако се супституција мерних података спроводи након извршеног обрачуна, потребно је извршити исправку обрачуна и супституисане податке доставити кориснику.

8.11. ПРИСТУП МЕРНИМ ПОДАЦИМА

8.11.1. Директан приступ мерним подацима са бројила путем даљинске и локалне комуникације је дозвољен само овлашћеним лицима ЕМС АД задуженим за конфигурацију, одржавање, валидацију, супституцију и аквилицију података и корисницима мерних података. Корисници мерних података су:
- корисник преносног система или његови овлашћени представници ради уvida и прикупљања података који се односе на његово мерно место;
- снабдевац корисника преносног система;
- друга лица у складу са прописима.

8.11.2. ЕМС АД је одговоран за организовање и издавање одговарајућих дозвола за приступ мерним подацима и за дефинисање нивоа права приступа, водећи истовремено рачуна о сигурности локалних података у објекту и бази података.
8.11.3. ЕМС АД обезбеђује делегирање права даљинског приступа мерним подацима на бројилу тако што дефинише списак овлашћених корисника мерних подataka у циљу избегавања конфликта између овлашћених страна. ЕМС АД додељује време приступа мерним подацима водећи рачуна о потребама за аквизицијом подataka ЕМС АД и корисника мерних података у складу са принципом недискриминације.

8.11.4. Непоштовање одредби утврђене расподеле времена приступа мерним подацима доводи до укидања права приступа мерним подацима.

8.11.5. Ако корисник мерних података то захтева, ЕМС АД ће на мерном месту дозволити приступ одговарајућем комуникационом порту бројилаза локално или даљинско очитање и то:

- у општем смислу, преко IC комуникационог порта према IEC 62056-21;

ЕМС АД додељује кориснику мерних података право самоочитања са лозинкама за приступ бројилу и временски интервал у којем се ова комуникација може вршити.

8.11.6. Обавеза корисника мерних података је да користе званичне, лиценциране апликације за даљинску комуникацију и пренос података као и да користе искључиво оне лозинке за самоочитање које им је доделио ЕМС АД.

8.11.7. ЕМС АД обезбеђује сигурност локално регистрованих података на бројилима, као и сигурност базе мерних података и регистара у бројилима.

8.11.8. ЕМС АД нема овлашћење да мења податке који су локално регистровани на бројилима, изuzeв за време периода испитивања бројила и провере инсталирање (само за период трајања испитивања). О свакој интервенцији над бројилима сачињава се записник који садржи податке о нерегистрованој или неисправно регистрованој електричној енергији.
ПОГЛАВЉЕ 9: ПРЕЛАЗНЕ И ЗАВРШНЕ ОДРЕДБЕ

9.1.1. Саставни део Правила су и следећи прилози:
 - Прилог А: Стандардни подаци;
 - Прилог Б: Концепција повезивања техничких система управљања.

9.1.2. Иницијативу за измену, односно допуну Правила може дати ЕМС АД, Агенција, произвођач електричне енергије, оператор дистрибутивног система, гарантовани снабдевач, снабдевач и купац чији је објекат прикључен на преносни систем.

9.1.3. Иницијатива за измену, односно допуну Правила доставља се председнику Комисије, који је прослеђује члановима Комисије.

9.1.4. У року од 30 дана од дана одржавања седнице на којој је Комисија разматрала предлог за измену, односно допуну Правила, ЕМС АД сачињава предлог за измену, односно допуну Правила и доставља га Агенцији ради прибављања сагласности, или Агенцији доставља образложење због чега неће доставити предлог за измену, односно допуну Правила, заједно са записником са седнице Комисије.

9.1.5. ЕМС АД је дужан да у року од годину дана након ступања Правила на снагу, усагласи са одредбама Правила сва општа и друга акта, као и закључене споразуме и уговоре.

9.1.6. Права и обавезе јавног снабдевача у смислу ових Правила, преузима гарантовани снабдевач након именовања гарантованог снабдевача у складу са чл. 190. и 397. Закона о енергетици.

9.1.7. До преноса права својине на објектима преносне мреже који су у својини корисника преносног система, ЕМС АД управља делом објеката купаца и произвођача, а у складу са тачкама 1.2.2.-1.2.4. Правила.

9.1.8. Даном ступања на снагу Правила престају да важе Правила о раду преносног система број: 1-4-0/12855/3 од 15.10.2015. године.

9.1.9. По добијању сагласности Агенције за енергетику Републике Србије, ова Правила се објављују на интернет страници ЕМС АД и ступају на снагу осмог дана од дана објављивања.

ПРЕДСЕДНИК СКУПШТИНЕ

мр Милун Тривунац, магистар економских наука

ЕМС АД БЕОГРАД
СКУПШТИНА
Клас.-знак: 1 4 0
Број: 001-00-ROU-11/2017-
ПРИЛОГ А: СТАНДАРДНИ ПОДАЦИ

А1. ПЛАНИРАНА ПОТРОШЊА ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ У ОБЈЕКТУ

Подаци из следеће таблице достављају се обавезно за наредних пет и за десету годину:

<table>
<thead>
<tr>
<th>Месец</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{max} [MW]</td>
<td></td>
</tr>
<tr>
<td>енергија [MWh]</td>
<td></td>
</tr>
<tr>
<td>СУМА [MWh]</td>
<td></td>
</tr>
</tbody>
</table>

где је P_{max} максимална снага у посматраном временском периоду.

Уколико електроенергетски објекат има и производњу и потрошњу, биланси производње и потрошње се уписују одвојено.

А2. ПЛАНИРАНА ПРОИЗВОДЊА ЕЛЕКТРИЧНЕ ЕНЕРГИЈЕ У ОБЈЕКТУ

Подаци из следеће таблице достављају се обавезно за наредних пет и за десету годину:

<table>
<thead>
<tr>
<th>Месец</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>енергија [MWh]</td>
<td></td>
</tr>
<tr>
<td>СУМА [MWh]</td>
<td></td>
</tr>
</tbody>
</table>

Под производњом сматра се нето производња у месту прикључења у којој се врши предаја произведене енергије, тј. потребно је одбити износ сопствене потрошње.

А3. ПРИЛАГОЂЕНОСТ ПРОИЗВОДЊЕ

Подаци из следеће таблице достављају се обавезно за наредних пет и за десету годину, и то за сваки генератор понаособ:

<table>
<thead>
<tr>
<th>референтно време</th>
<th>снага генератора у месту прикључења</th>
<th>у случају нерасположивости навести разлог</th>
</tr>
</thead>
<tbody>
<tr>
<td>трећа среда у јануару у 10:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>трећа среда у јануару у 19:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>трећа среда у јулу у 10:30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Генератор

<table>
<thead>
<tr>
<th>Параметар</th>
<th>Значење</th>
</tr>
</thead>
<tbody>
<tr>
<td>номинална привидна снага</td>
<td>МВА</td>
</tr>
<tr>
<td>номинална активна снага</td>
<td>MW</td>
</tr>
<tr>
<td>фактор снаге</td>
<td></td>
</tr>
<tr>
<td>спрега намотаја статора</td>
<td></td>
</tr>
<tr>
<td>номинални напон статора</td>
<td>кВ</td>
</tr>
<tr>
<td>номинална струја статора</td>
<td>А</td>
</tr>
<tr>
<td>номинална струја побуде</td>
<td>А</td>
</tr>
<tr>
<td>напон побуде при номиналном оптерећењу</td>
<td>кВ</td>
</tr>
<tr>
<td>негативна (инверзна) компонента реактансе</td>
<td>р.у.</td>
</tr>
<tr>
<td>негативна (инверзна) компонента резистансе</td>
<td>р.у.</td>
</tr>
<tr>
<td>нулта (хомополарна) компонента реактансе</td>
<td>р.у.</td>
</tr>
<tr>
<td>нулта (хомополарна) компонента резистансе</td>
<td>р.у.</td>
</tr>
<tr>
<td>реактанса расипања статора</td>
<td>р.у.</td>
</tr>
<tr>
<td>резистанса статора</td>
<td>р.у.</td>
</tr>
<tr>
<td>синхронна реактанса у директној оси</td>
<td>р.у.</td>
</tr>
<tr>
<td>синхронна реактанса у попречној оси</td>
<td>р.у.</td>
</tr>
<tr>
<td>транзијентна реактанса у директној оси</td>
<td>р.у.</td>
</tr>
<tr>
<td>транзијентна реакциона у попречној оси</td>
<td>р.у.</td>
</tr>
<tr>
<td>субтранзијентна реакциона у директној оси</td>
<td>р.у.</td>
</tr>
<tr>
<td>субтранзијентна реакциона у попречној оси</td>
<td>р.у.</td>
</tr>
<tr>
<td>механичко пригушење</td>
<td>р.у.</td>
</tr>
<tr>
<td>апериодична временска константа пригушења струје кратког споја</td>
<td>с</td>
</tr>
<tr>
<td>временска константа транзијентног процеса у директној оси при отвореним намотајима статора</td>
<td>с</td>
</tr>
<tr>
<td>временска константа субтранзијентног процеса у директној оси при отвореним намотајима статора</td>
<td>с</td>
</tr>
<tr>
<td>временска константа транзијентног процеса у директној оси при краткоспојеним намотајима статора</td>
<td>с</td>
</tr>
<tr>
<td>временска константа субтранзијентног процеса у директној оси при краткоспојеним намотајима статора</td>
<td>с</td>
</tr>
<tr>
<td>временска константа транзијентног процеса у попречној оси при отвореним намотајима статора</td>
<td>с</td>
</tr>
<tr>
<td>временска константа субтранзијентног процеса у попречној оси при отвореним намотајима статора</td>
<td>с</td>
</tr>
<tr>
<td>временска константа транзијентног процеса у попречној оси при краткоспојеним намотајима статора</td>
<td>с</td>
</tr>
<tr>
<td>временска константа субтранзијентног процеса у попречној оси при краткоспојеним намотајима статора</td>
<td>с</td>
</tr>
<tr>
<td>инерциона константа агрегата (H)</td>
<td>с</td>
</tr>
<tr>
<td>инерциона константа (T₁)</td>
<td>с</td>
</tr>
</tbody>
</table>
Додаци:
1. Погонски дијагرام генератора
2. Криве огледа кратког споја и празног хода

Систем побуде генератора

номинална једносмерна струја побуде А
номинални једносмерни напон побуде В
минимални једносмерни напон побуде В
максимални једносмерни напон побуде В
максимални износ корака промене струје побуде А
минимална струја побуде А
врста побуде (машинска или статичка)

Додаци:
1. Структурни блок дијаграм са параметрима свих блокова
2. Основни подаци о форсирању побуде (фактор, време трајања...)
3. Електричне заштите и њихове карактеристике

Примарни (турбински) регулатор

опсег статизма турбинског регулатора %
опсег примарне регулације %
неосетљивост регулатора mHz

Додатак
1. Структурни блок дијаграм са параметрима свих блокова

Локална опрема за секундарну регулацију

Додатак
1. Структурни блок дијаграм са параметрима свих блокова

Сопствена потрошња

1. Износ сопствене потрошње са отцепа генератора у функцији снаге на генератору
2. Износ сопствене потрошње генератора која се преузима из преносне мреже у функцији снаге генератора
А5. ТР АНСФОРМАТОРИ

<table>
<thead>
<tr>
<th>Тип</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>високонапонска страна</td>
<td></td>
</tr>
<tr>
<td>називна привидна снага</td>
<td>MVA</td>
</tr>
<tr>
<td>називни напон</td>
<td>kV</td>
</tr>
<tr>
<td>нисконапонска страна 1</td>
<td></td>
</tr>
<tr>
<td>називна привидна снага</td>
<td>MVA</td>
</tr>
<tr>
<td>називни напон</td>
<td>kV</td>
</tr>
<tr>
<td>нисконапонска страна 2</td>
<td></td>
</tr>
<tr>
<td>називна привидна снага</td>
<td>MVA</td>
</tr>
<tr>
<td>називни напон</td>
<td>kV</td>
</tr>
<tr>
<td>спрега (векторска група)</td>
<td></td>
</tr>
<tr>
<td>тип регулације</td>
<td></td>
</tr>
<tr>
<td>регулативни опсег, корак регулативног опсега</td>
<td></td>
</tr>
<tr>
<td>струја празног хода</td>
<td></td>
</tr>
<tr>
<td>напон кратког споја у12</td>
<td></td>
</tr>
<tr>
<td>напон кратког споја у13</td>
<td></td>
</tr>
<tr>
<td>напон кратког споја у23</td>
<td></td>
</tr>
<tr>
<td>степен искоришћења</td>
<td></td>
</tr>
<tr>
<td>губици у бакру</td>
<td>kW</td>
</tr>
<tr>
<td>губици у гвожђу</td>
<td>kW</td>
</tr>
</tbody>
</table>

Додаци:

1. Представљање трансформатора у нултом (хомополарном) систему – заменска шема
2. Начин уземљења неутралне тачке примарног и секундарног намотаја
3. Електричне заштите и њихове карактеристике
А6. ДАЛЕКОВОДИ И КАБЛОВИ

<table>
<thead>
<tr>
<th>Називни напон</th>
<th>.. kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Укупна дужина</td>
<td>.. km</td>
</tr>
<tr>
<td>Број система</td>
<td>..</td>
</tr>
<tr>
<td>Број проводника по фази</td>
<td>..</td>
</tr>
<tr>
<td>Тип проводника</td>
<td>..</td>
</tr>
<tr>
<td>Тип заштитног ужета (ужади)</td>
<td>..</td>
</tr>
<tr>
<td>Директна (погонска) резистанса</td>
<td>.. Ω</td>
</tr>
<tr>
<td>Директна (погонска) реактанса</td>
<td>.. Ω</td>
</tr>
<tr>
<td>Директна (погонска) сусцептанса</td>
<td>.. S</td>
</tr>
<tr>
<td>Нулта (хомополарна) резистанса</td>
<td>.. Ω</td>
</tr>
<tr>
<td>Нулта (хомополарна) реактанса</td>
<td>.. Ω</td>
</tr>
<tr>
<td>Нулта (хомополарна) сусцептанса</td>
<td>.. S</td>
</tr>
</tbody>
</table>

Додатак:
1. Електричне заштите и њихове карактеристике

А7. ПРЕКИДАЧИ

<table>
<thead>
<tr>
<th>Називни напон</th>
<th>.. kV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Називна струја</td>
<td>.. A</td>
</tr>
<tr>
<td>Називна моћ прекидања</td>
<td>..</td>
</tr>
<tr>
<td>Струје кратког споја</td>
<td>.. kA</td>
</tr>
<tr>
<td>Називна струја укључења</td>
<td>.. kA</td>
</tr>
</tbody>
</table>

А8. ОПРЕМА ЗА КОМПЕНЗАЦИЈУ РЕАКТИВНЕ ЕНЕРГИЈЕ

<table>
<thead>
<tr>
<th>Тип</th>
<th>.. Mvar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Називна снага</td>
<td>..</td>
</tr>
<tr>
<td>Називни напон</td>
<td>.. kV</td>
</tr>
</tbody>
</table>
ПРИЛОГ Б: КОНЦЕПЦИЈА ПОВЕЗИВАЊА ТЕХНИЧКИХ СИСТЕМА УПРАВЉАЊА
Скараћените на слици Б.1. имају следећа значења:
- ЕНТСО-Е ТСО – оператори преносног система из ENTSO-E;
- НДЦ – Национални диспечерски центар ЕМС АД;
- РНДЦ – резервни Национални диспечерски центар ЕМС АД;
- РДЦ – регионални диспечерски центар ЕМС АД;
- ДДЦ – дистрибутивни диспечерски центар оператора дистрибутивног система;
- ПДЦ – подручни диспечерски центар оператора дистрибутивног система.

Слика Б.1 – концепција повезивања техничких система управљања (физичке телекомуникационе везе)